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ABSTRACT 
Recommendation is widely used in our daily life. Especially in the 
e-commerce area, a good recommendation system can help users a 
lot. In this paper, we introduce our approach for the KKBOX’s 
Music Recommendation Challenge. In this challenge, we were 
asked to build a recommendation system that can predict whether 
a user will listen again to a song within one month after the user’s 
very first observable listening event in KKBOX. Our solution was 
mostly based upon systematic and extensive feature engineering 
and an ensemble of simple boosting tree classification algorithms, 
both of which could easily be used in industry. However, we did 
not use timestamp of user-song interactions here, since this was 
hidden by Kaggle to avoid leakage. 

KEYWORDS 
Feature engineering, recommender systems, gradient boosting 
tree, SVD. 

1 INTRODUCTION 
In the WSDM Cup KKBOX’s Music Recommendation 

Challenge [6], we had to build a recommendation system that can 
predict whether a user will listen to a song again within one month 
after the user’s very first observable listening event in KKBOX. If 
the user did not listen to the song again within one month, the 
target variable will be 0, and 1 otherwise. The training and test 
sets consist in unique user/song pairs selected from users’ 
listening history in a certain period, split by time. The test set is 
split 50/50 between public and private leaderboards; obviously, 
targets are unknown in the leaderboards test set, but the data 
distribution is, and we can thus use it as we will show later. At the 
time of the competition, submissions were evaluated on the public 
leaderboard, while 
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final results were obtained on the private leaderboard. As usual in 
such challenges, one must take particular care to avoid learning 
the public leaderboard too well at the risk of overfitting and 
obtaining degraded results on the private leaderboard (this 
actually happened to the top four winners on the public 
leaderboard, the fourth, ekffar, falling to fifth rank in the private 
leaderboard).  

In this competition, the organizer also provides three attributes 
of the user-song interaction context, as well as attributes of each 
song and user. The use of public data was encouraged by the 
organizers; however, we did not find public datasets we could 
efficiently use within the challenge time-period.  
There is no explicit timestamp information for the first listening 
event of a user-song pair. However, the order of examples in the 
training and test datasets itself is time-ordered (apparently, the 
Kaggle organizers did not shuffle the datasets). Using this time-
ordered information and new registration information, we could 
approximately extract the timestamp of the first listening event of 
a user-song pair.  However, the organizers said they removed the 
timestamp feature to avoid leakage. Therefore, we did not use 
anywhere this timestamp information in our approach.  

Feature engineering is a critical step in the data science 
process, which comes right before the modeling stage. It is one of 
the most important and time-consuming tasks in predictive 
analytics projects. Its purpose is to design, from the raw data, 
features that will make the model easier and faster to train, and 
increase its performances. In practice, almost all the winners in 
recent Kaggle competitions have extensively used feature 
engineering, and put a lot of time and energy in designing these 
features. For example, in an extreme case, winners in the Grupo 
Bimbo Inventory Prediction1 reported that they spent 95% of their 
time on feature engineering and only 5% on modeling (details can 
be found in the challenge blog 2 ). In the Outbrain Click 
Prediction3 kaggle challenge, it was possible to get 19th position 
by the help of feature engineering [2]. Feature engineering 
involves deep data exploration to understand their specificities, as 

                                                                    
1 https://www.kaggle.com/ben519/grupo-bimbo-inventory-demand/visualize-
predictions  
2 http://blog.kaggle.com/2016/09/27/grupo-bimbo-inventory-demand-winners-
interviewclustifier-alex-andrey/ 
3 https://www.kaggle.com/c/outbrain-click-prediction  



 

well as domain knowledge to create meaningful and helpful 
features. Until now, feature engineering is still more art than 
science. However, some authors [3], [4] have proposed methods 
to automate the process of feature engineering, which would 
certainly be a huge advantage for Kaggle challenges, and more 
generally, to any predictive analytics project. Our approach for the 
WSDM Cup aligns with these objectives: we tried to generate as 
automatically as possible a large number of features. Careful 
evaluation of generated features allowed us to progressively 
increase performances. We used very simple vanilla models. 

So feature engineering is a really time-consuming part of data 
mining, requiring strong data mining and statistics backgrounds as 
well as domain knowledge, but can improve performances 
significantly. Automatic feature engineering will certainly happen 
in the future. 

This paper describes the approach of the team EdZhang in the 
WSDM Cup in section 2 and the results obtained in section 3. The 
team obtained rank 6 in the challenge. 

2 APPROACH 

2.1 Dataset description 
In this music recommendation competition, there are five csv 

files. The structure of the dataset is really simple and is shown in 
Figure 1. The train.csv and test.csv contain user ID, songs ID and 
three context attributes.  The other three csv files include 
attributes of each song and user. We can merge all these attributes 
into train.csv and test.csv to generate a union table.  

 

Figure 1: Structure of the dataset in KKBOX’s Music 
Recommendation Challenge. Light gray square indicates csv 
table in the dataset, white square indicates one attribute in the 
csv table and the link between two tables indicates that two 
tables can be merged by that attribute. 

The number of features in each csv file is also very small.  
Table 1 shows the details of the count of features in each csv file, 
where user ID and song ID are included in train.csv and test.csv.  

Table 1: Description of csv file in the dataset 

Name of file Count of Features 
train.csv 6 
test.csv 
songs.csv 
members.csv 
song_extra_info.csv 

5 
6 
6 
2 

 
In the following sections, we will use the following notations, 

described in Table 2. 

Table 2: Notations 

Notation Description 
m, n Number of users, songs 
𝑀" Co-occurrence matrix of user and 𝑒, where 

𝑒 can be 𝑒𝑛𝑡𝑖𝑡𝑦 song, or artist 
𝑀(,*
"  The value in ith row and jth column of 

matrix 𝑀", e.g. number of times user i 
listened to song j 

𝑀(,+
"  The ith row of matrix  𝑀". 

𝑀+,*
"  The jth column of matrix  𝑀". 

F(𝑀") A function applied on matrix  𝑀". 
L The size of latent space of SVD. 
𝑁- Neighborhood of user	𝑎. 

𝐹1-2"_4"-567"  
 

A new feature or a new groups of features 

2.2 Exploration 
Data exploration is the first step in a data mining project and 

heavily depends on the dataset. It is important to give an idea of 
how to deal with the task. In Figure 1, we can see that the 
structure of our dataset is not very complex. Therefore, we 
merged all the tables into one union table before doing the data 
exploration described below. 

2.2.1 Count of values in each feature 
Because most of the features in the dataset are categorical 

features, we calculate the number of different values of each 
categorical feature as shown in Table 3. The counts of user, song, 
artist_name, composer, lyricist are very large, so one-hot 
encoding will not be a suitable preprocessing method because of 
the curse of dimensionality and the cost of memory and 
computation. In this situation, choosing other encoding methods 
or finding some representations of these features will help the 
model. 

2.2.2 Missing values 
Understanding and handling missing values can also heavily 

influence the performance of a predictive model. We make a brief 
summary of the observed missing value rates in Table 3. 
Composer, lyricist and gender have high missing value rates 



 

compared with the other features. Because in this challenge, 
competitors could use external data, these features would be good 
candidates to search external data. Although we did not use any 
external data because of lack of time, it would be useful to enrich, 
through external data, the features with high missing value rates. 
Furthermore, the difference of missing value rates among 
different features also leads us to generate more features for 
artist_name than for composer and lyricist. 

Table 3: Count of values and missing value rate of different 
features 

Name Type Count of 
values 

Missing value 
rate (%) 

msno categorical 34,403 0 
song_id 
source_system_tab 
source_screen_name 
source_type 
song_length 
genre_ids 
artist_name 
composer 
lyricist 
language 
city 
bd (age) 
gender 
registered_via 
registration_init_time 
expiration_date 
song name 
isrc 

categorical 
categorical 
categorical 
categorical 

numeric 
categorical 
categorical 
categorical 
categorical 
categorical 
categorical 

numeric 
categorical 
categorical 
timestamp 
timestamp 

text 
categorical 

419,839 
9 

22 
12 
- 

608 
46,372 
86,438 
37,876 

10 
21 
- 
2 
6 
- 
- 
- 

315,966 

0 
0.236 
5.815 
0.290 
0.001 
1.616 
0.001 

23.102 
44.327 
0.002 

0 
0 

40.403 
0 
0 
0 

0.023 
7.796 

 

2.2.3 Training and test sets 
We also want to see the difference between training and test 

sets, because most data mining algorithms have a basic 
assumption that the training and test sets must have the same 
distribution (identically distributed). There are 7,377,418 
examples in the training set and 2,556,790 examples in the test set, 
which is a ratio of almost 2.88 to 1. For the target in the training 
set, the ratio of the number of positive examples to the number of 
negative examples is about 1, so we have a balanced binary 
classification task.  We check the distributions of the training and 
test sets on the various attributes. For example, we compare the 
count of each value in the context features (source_screen_name, 
source_system_tab,  source_type) between training and test sets. 
In Figure 2, we can see that the distributions of the training and 
test sets are really different; for example, the difference between 
the percentage of  the value “my library” of source_system_tab in 
the training set is 10% larger than in the test set. This situation 
also occurs for the other context features source_sceen_name and 
source_type. Because of such large differences, it is in theory not 
allowed to apply on test set a model trained on the training set. 
This is why we did feature engineering on the training and test 

sets together, as will be shown later, which is certainly not a good 
choice in the normal i.d. situation. 

There are 35,996 different songs in the training set, 224,753 in 
the test set and 59,873 different songs only exist in the test set. 
This means that the test set has 26.64% of new songs, usually 
called cold-start. These songs are present in 12.52% of the test 
examples. This is a big challenge in this task. The cold-start 
problem also exists for users. There are 30,755 different users in 
the training set and 25,131 different users in the test set where 
3,648 only exist in the test set (14.52% cold-start users, appearing 
in 7.20% of test examples), which is shown in Figure 3. The cold-
start problem in this task is so significant that we need to put even 
more care on getting a robust model to avoid overfitting. 

Moreover, some user-song pairs exist in both training and test 
sets. Because if a user listens the same song after a long time (e.g. 
two months), the system will count that user-song pair again. In 
total, the count of this kind of user-song pairs is 320,446, which is 
12.53% of the test set. These user-song pairs are the same in the 
training and test sets in the attributes level, but their meaning in 
training and test are totally different because there is a hidden 
time-order between training and test sets. This kind of situation 
also challenges us to make a robust model so as to avoid 
overfitting. 

 

Figure 2: Count of each value in source_system_table in the 
training (blue) and test (orange) sets. X axis shows different 
values in source_system_tab, Y axis shows the percentage of 
examples in training / test sets having this value. 

 

Figure 3: Structure of training and test sets. The light grey 
indicates the training set and the white part indicates the test 
set. “user-song duplicate” indicates the user-song pairs that 
exist both in the training set and test set. “user cold start” and 
“song cold start” indicate the user or song that never occur in 
the training set.  



 

2.3 Feature engineering 
2.3.1 Attributes of song  

There are two csv files related with the raw features of song 
(song.csv and song_extra_info.csv). We extract several features 
from song_extra_info.csv. 

Language from song name: we use the langid package 
https://pypi.python.org/pypi/langid to detect the language 
associated to the song name and, for each song 𝑠, derive feature : 

𝐹9-1:6-:"_;<1: 𝑠  (1) 

Year and country of song from ISRC: from Wikipedia, we 
know that the first two characters of The International Standard 
Recording Code (ISRC) is a two-character country code and the 
last two characters of ISRC represent the last two digits of the 
reference year. We extract the year of song and the country code 
of song from ISRC, for each song 𝑠: 

𝐹="-7_;<1: 𝑠     𝐹><6157?_;<1: 𝑠  (2) 

Statistic features of genre, artist, composer, lyricist: Because 
some songs could contain more than one genre, artist, composer 
and lyricist. We calculate the count of genre, artist, composer and 
lyricist in each song. In some songs, the Artist, composer and 
lyricist could be same. We generate two features that indicates if 
the artist and composer in a song are the same one, if the artist, 
composer and lyricist in a song are the same one.  

𝐹:"17"@AB 𝑠 , 𝐹-75(C5@AB 𝑠 , 

	𝐹D<2E<C"7_F"1 𝑠   

𝐹F?7(D(C5_F"1 𝑠   

 𝐹-75(C5_D<2E<C"7_C-2" 𝑠  

𝐹-75(C5_D<2E<C"7_F?7(D(C5_C-2" 𝑠   

(3) 

2.3.2 Attributes of user 
Age of users: in data exploration, we can see outliers in the age 

attribute, including small age (age=0), negative age (age<0) and 
large age (age >130). In this approach, we set to 0 all ages less 
than or equal to 0, and set to 76 all ages larger than 75. For each 
user 𝑎 we define feature: 

𝐹G:"_HC"7 𝑎      (4) 

Registration and expiration date of users: from the description 
of the competition, we know that the time block of the dataset is 
before the time block of KKBOX’s Churn Prediction Challenge [7] 
where the log history goes from 2015-01-01 to 2017-03-31. We 
thus generate two features computing how many days there are 
between registration date and 2017-03-31, and between expiration 
date and 2017-03-31. In addition, we generate the year, month of 
year and day of month for the registration and expiration dates. 
For each user 𝑎  we define features: Registration and expiration 
date (user) 

𝐹I":(C57-5(<1_HC"7 𝑎 ,  𝐹I":(C57-5(<1_HC"7_= 𝑎 , 
𝐹I":(C57-5(<1_HC"7_J= 𝑎 , 𝐹I":(C57-5(<1_HC"7_KJ 𝑎 ,		         

(5) 

𝐹LME(7-5(<1_HC"7 𝑎 , 𝐹LME(7-5(<1_HC"7_= 𝑎 , 
𝐹LME(7-5(<1_HC"7_J= 𝑎 ,	𝐹LME(7-5(<1_HC"7_KJ 𝑎  

Age gap between user and song: this feature represents the gap 
between the age of users and the year of a song: 

𝐹G:"N-E_HC"7;<1: 𝑎, 𝑠      (6) 

In real life, young people usually prefer newer songs, while 
older are more likely to listen to older songs. 

Count of songs each user listened: this feature indicates how 
many different songs each user listened.  

𝐹><615_HC"7;<1: 𝑎, 𝑠      (7) 

2.3.3 Representation features 
Because of the strong interaction between user and song, we 

should certainly derive interaction-based features. However, since 
the dimension of user and song is large, we cannot encode the 
behavior of user or song by One-Hot encoding. This requires us to 
find adequate representations for user, song and user-song pairs. 
In the recommendation area, neighborhood based Top-N 
collaborative filtering (CF) and model based matrix factorization 
(MF) are two strong and powerful families (see [1]) which we 
could use to generate features. The item-based CF will compute 
the Top-N most similar items for each item based on some 
similarity measure (e.g. cosine similarity, Jaccard similarity, etc.) 
as the neighbors of that item. Then it will compute a score of each 
user-item pair based on what the user had purchased and 
neighbors of the item. Similarly, the user-based CF will construct 
the Top-N most similar users for each user as the neighbors of that 
user. On the other hand, matrix factorization method projects both 
user and item into a latent space of low dimension. In that space, a 
user will be close to the items that he had purchased. The most 
efficient MF method is the Singular Value Decomposition (SVD) 
([5]).  

SVD representation of user and songs. To do SVD matrix 
factorization we used sparsesvd (a Python package4), which is a  
wrapper around the SVDLIBC 5  library by Doug Rohde. The 
sparsesvd package can handle SciPy’s sparse Compressed Sparse 
Column (CSC) matrix format, so it is memory-efficient. 

M ≈ U. 𝑉T (8) 

Where 𝑀 is an 𝑚×𝑛 input matrix, U an 𝑚×𝑘 matrix, V an 𝑛×𝑘 
matrix, k is the dimension of the SVD latent space. 

For the input part, we use all the user-song interactions in the 
train set and test except the duplicate interactions to construct the 
user-song matrix 𝑀 = 𝑀𝑠𝑜𝑛𝑔. As discussed in section 2.2.2, the 
distributions of training and test sets are very different. To 
mitigate this effect, we chose to do feature engineering on the 
combination of both training and test sets. This means that in the 
user-song matrix 𝑀𝑠𝑜𝑛𝑔, 0 shows that the user did not listen to the 
song, 1 indicates that he did at least once. Because we introduce 

                                                                    
4  https://pypi.python.org/pypi/sparsesvd/  
5  http://tedlab.mit.edu/~dr/SVDLIBC/ 



 

some leakage from the test set into the training data, we need to be 
extra careful about robustness and overfitting. We will see how 
below.  

The dimension k of the SVD latent space is a hyper-parameter 
we evaluated by cross-validation: in our final results, we choose k 
= 30. Using the latent space representations computed in equation 
(1), we generate one 30-dimension user representation and one 
30-dimension song representation.  We also compute the dot 
product of these two representations as a representation of the 
user-song pair. 

Moreover, we multiply each dimension of user representation 
and song representation to generate another 30-dimension user-
song pairs representation. These features can indicate how similar 
of user and song in each dimension of the latent space. 
So we generate totally 30+30+30+1=91 new features here: 

𝐹;[K_HC"7;<1: 𝑎, 𝑠 = 𝑎, 𝑠, 𝑎. 𝑠, 𝑎×	𝑠  (9) 

Where   𝑎 = 𝑈-+, 𝑠 = 𝑉C+, 𝑎. 𝑠 is the dot product of projections 𝑎 
and 𝑠, and 𝑎×	𝑠 = 𝑎]×𝑠], … , 𝑎_`×𝑠_`	 . 

CF score of each user-song pairs: Top-N CF is another main 
family of recommendation methods system. We use user-based 
CF rather than item-based CF, because there are less users than 
songs in the dataset as shown in Table 3. We compute cosine 
similarity between all different user pairs based on user-song 
matrix 𝑀C<1:_(a: 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑎, 𝑏 = 	
𝛼 ∙ 𝛽

||𝛼|| ∙ ||𝛽||
 (10) 

Where 𝛼  and 𝛽  are the two vectors of users 𝑎  and 𝑏  in matrix 
𝑀C<1:_(a , 	𝛼 = 𝑀-,+

C<1:_(a , 	𝛽 = 𝑀h,+
C<1:_(a . As before, we use all 

the user-song interactions in the training and test sets except the 
duplicate interactions to construct user-song matrix 𝑀C<1:_(a.  

For each user 𝑎, we select as neighborhood 𝑁- of 𝑎 the top 100 
users with highest cosine similarity with user 𝑎. For each user-
song pair 𝑎, 𝑠 , we then generate the Top-N CF score as : 

𝐹T<E+i_>j_CD<7" 𝑎, 𝑠 = 	
1
𝑚-

𝑀6,l
C<1m_no	.		𝑐𝑜𝑠𝑖𝑛𝑒(𝑎, 𝑢)

6	∈it

 (11) 

Where 𝑚- is the number of users in 𝑁-. 
SVD representation of user-artist pairs: It is similar to the 

SVD representation on user-song pairs. The difference between 
user-song pair and user-artist pair representations is that for each 
song there might be more than one artist.   
1. We Split the artist attributes by separators (, | \\ & \ / + ; ，

and feat. Features featuring with X) (different separators are 
separated by space). One song can have more than one artist, 
which are separated mostly by these separators. That is the 
reason we choose these separators here. 

2. We compute a user-artist matrix 𝑀-75(C5  where 𝑀-*
-75(C5 

indicates the number of songs that contain artist 𝑗 which user 
𝑎 has listened to. We also eliminate all the duplicate user-
song pairs before this process. 

3. We decompose matrix 𝑀-75(C5  by SVD (with latent space 
dimension equal to 180: we choose this size by testing the 
Pearson Correlation Coefficient between the feature and 
target values). Finally, we use dot product of user and artist 
representations to generate a 1-dimension score of user-artist 
pairs. Because one song will contain more than one artist, we 
use the maximum values of user-artist pairs for each user-
song pair, when we use this user-artist feature. 

Through this process, we generate one new feature: 

𝐹;[K_HC"7G75(C5 𝑎, 𝑠 = max
*:*∈C

𝑎. 𝚥  (12) 

Similarity score between user and song attributes (genre, 
artist_name, lyricist, composer, language): we want to know how 
similar are songs a user listened to and song he is listening to now.  
The following is the workflow of this process. Let us take 
artist_name for example. We count how many times a user 
listened songs by that artist. In other words, we generate a count 
of word vector for each user, where each word indicates one artist. 
Combining all these count of word vectors, we get a user-artist 
matrix 𝑀-,+

-75(C5 for user 𝑎. 
Let 𝑎, 𝑠  indicate a user-song pair, we denote 𝐴C-75(C5  as the 

one-hot encoding vector of feature artist of song s. For each user-
song pair 𝑎, 𝑠 , we generate similarity features S as follows: 

𝐹(2_HC"7;<1:_-75(C5 𝑎, 𝑠 	

= 	
𝑀-,+
-75(C5 − 𝐴C-75(C5

	 𝑀-*
-75(C5 − 𝐴-*-75(C5* 	 ∙ 	(𝐴C*-75(C5/ 𝐴C*-75(C5~ )T

 (13)	

 
Actually, this similarity measures how similar a particular 

user’s transaction is with all his other transactions. All the other 
similarity features between user and the attributes of song are 
generated in the same way. We generate 5 features in this process 
with x=(genre, artist_name, lyricist, composer, language):  

𝐹C(2_HC"7;<1:_M		 (14)	

Similarity score between user and context attributes: the 
method to generate this group of features is the same as the 
previous one. The only difference is that in this part we measure 
the similarity of the context information inside each user. 
We generate 3 features here, with x=(source_system_tab,  
source_screen_name, source_type): 

𝐹C(2_HC"7><15"M5_M		 (15)	

User representation of context information: from Figure 2, we 
found that context information is important in this challenge. This 
gives us the idea of generating more features for these context 
features. Take source_system_tab for example here, we will 
generate user-source_system_tab co-occurence matrix 
𝑀C<67D"_C?C5"2_5-h in the same way we generated 𝑀-75(C5		in the 
SVD representation of user-artist. Then we normalize 
𝑀-,+
C<67D"_C?C5"2_5-h  by  𝑀-,+

C<67D"_C?C5"2_5-h. 
We thus get a user-source_system_tab feature for each user 𝑎: 



 

𝐹HC"7><15"M5__C<67D"_C?C5"2_5-h	 𝑎 	

= 	
𝑀-,+
C<67D"_C?C5"2_5-h

𝑀-,*
C<67D"_C?C5"2_5-h

*
 (16) 

We generate representation features for the other context 
features in the same way. Totally, we generate 46 features here: 

𝐹HC"7><15"M5_M 𝑎  (17) 

with x = (source_system_tab, source_screen_name, source_type). 
We thus have defined a total of 167 features, shown in Table 4, 
out of which 91 come from the SVD representation of (user, song) 
pairs: 

Table 4: Description of features generated by feature 
engineering 

Name Notation N° 
Language (song) 𝐹9-1:6-:"_;<1: 1 
Year and country 
(song)from ISRC 𝐹="-7_;<1:		𝐹><6157?_;<1: 2 

Statistic features 
of genre, artist, 

composer, lyricist 

𝐹:"17"_F"1		𝐹-75(C5_F"1  𝐹D<2E<C"7_F"1  

𝐹F?7(D(C5_F"1  𝐹-75(C5_D<2E<C"7_C-2" 

𝐹-75(C5_D<2E<C"7_F?7(D(C5_C-2" 

6 

Age (user) 𝐹G:"_HC"7 1 

Registration and 
expiration date 

(user) 

𝐹I":(C57-5(<1_HC"7 𝐹I":(C57-5(<1_HC"7_= 
𝐹I":(C57-5(<1_HC"7_J= 

𝐹I":(C57-5(<1_HC"7_KJ		𝐹LME(7-5(<1_HC"7 
𝐹LME(7-5(<1_HC"7_= 

𝐹LME(7-5(<1_HC"7_J=		𝐹LME(7-5(<1_HC"7_KJ 

8 

Age gap between 
(user-song) 𝐹G:"N-E_HC"7;<1: 1 

Count of songs 
user listened 
(user-song) 

𝐹><615_HC"7;<1:   1 

SVD rep. (user-
song)  𝐹;[K_HC"7;<1: 91 

CF score (user-
song)  

𝐹T<E+i_>j_CD<7" 1 

SVD rep. (user-
artist)  𝐹;[K_HC"7G75(C5 1 

Similarity score 
(user, song 
attributes) 

𝐹C(2_HC"7;<1:_M 5 

Similarity score 
(user, context 

attributes) 
𝐹C(2_HC"7><15"M5_M 3 

User rep. (user, 
context) 𝐹HC"7><15"M5_M 46 

 

2.4 Model Training 
We obtained our final results through  an ensemble of two 

gradient boosting tree models from LightGBM 6  package with 
different parameters. 

The only preprocessing applied to the features described in the 
previous section was filling missing values and using Label-
Encoder (sklearn) to map string variables to numeric ones. We fill 
missing value for categorical features by a new category we call 
“others” and for numeric features by “-1”. Since missing values 
are rarely MAR (missing at random), it is preferable to avoid 
filling in missing values by mean, median or most frequent 
categorical variable. This is even more so because we are using 
tree-based method. One-hot encoding for categorical features and 
normalization for the numeric features do not help improving tree-
based method. Moreover, one-hot encoding costs much more 
memory and computation time. The idea of filling in missing 
values by “others” or “-1” is that tree-based methods can handle 
different variables in one feature very well. In this section, we will 
introduce how we build our two models and how we blend them 
into one unique model to get better results. When we did this 
challenge, the version of sklearn was 0.19.1, the version of 
LightGBM 2.0.10 and the version of langid 1.1.6. 

2.4.1 LightGBM model 1 
Training set and Validation set. As shown in paragraph 2.3.2, 

there are 320,446 user-song pairs (12.53% of test set), which exist 
both in training and test sets but with different meanings. For 
these user-song pairs, target 1 in the training set means the user 
listened to that song again within one month after the user’s very 
first observable listening event. However, target 0 in the training 
set means the user listened to that song again but not within one 
month. Therefore, when we train the model, we always eliminate 
from the training set the duplicate user-song pairs with target 
variable 0.  We thus eliminate 173,931 training examples after this 
step.  

Validation set helps us evaluating the performances of our 
model offline, tuning parameters and avoiding overfitting on 
public leaderboard. It is very important to use a suitable validation 
set here to avoid overfitting by being exposed too often to the 
public leaderboard. 

Features used. All the features generated in section 2.3 are 
used in our models. All the other user raw features (msno, city, 
gender, registered_via), song raw features (song_id, song_length, 
genre_ids, artist_name, composer, lyricist, language) and context 
raw features (source_system_tab, source_system_name, 
source_system_type) are used in our models too.  

Hyper-parameters. Table 5 shows the hyper-parameters used 
in our LightGBM model 1 (first column). For the other hyper-
parameters not listed here, we simply use default values.  

Training. In our approach, we used 10-fold cross-validation 
(sklearn). Through stratified sampling, we draw from the training 
set 10 samples (folds) with 90% is used for training and 10% for 

                                                                    
6 http://lightgbm.readthedocs.io/en/latest/index.html 



 

validation. Each fold has almost equal numbers of positive and 
negative examples. Then, we train one LightGBM model on the 
training part of the cross-validation fold, and evaluate it on the 
validation part.  

Table 5: Values of hyper-parameters of LightGBM models 

Parameter LightGBM Model 
1 

LightGBM Model 
2 

learning_rate 0.05 0.1 
max_depth 15 15 
num_leaves 2� 2� 
application  binary binary 
colsample_bytree 0.7 0.9 
subsample 0.7 0.9 

a) num_boost_round 3100 3100 
early_stopping_rounds 10 10 

 
Blending of 10-fold cross-validation. We have obtained 10 

different models with different training and validation sets in our 
10 cross-validations samples. We blend these 10 models by 
simply taking an average of the prediction scores of the obtained 
10 models. We give an equal weight to all these 10 models in this 
blending step.  

One should note that, in this fashion, we can evaluate the 
significance of features without submitting our results on the 
public leaderboard. 

2.4.2 LightGBM model 2 
Training set and Validation set.  The methods of preprocessing 

and splitting training and validation sets are the same as for our 
LightGBM model 1. The only difference here is that we use 
different parameters of LightGBM algorithm. 

Feature used. It is the same as §2.4.1, all the features 
generated in session 2.3 and user raw features, song raw features, 
context raw features are used here. 

Hyper-parameters. Table 5 (right column) shows the hyper-
parameters used in our LightGBM model 2. For the other hyper- 
parameters not listed here, we simply use default values. 

Training and blending. As for LightGBM model 1. 

2.4.3 Ensemble model of LightGBM model 1 and LightGBM 
model 2 

After LightGBM model 1 and Light GBM model 2 with their 
different hyper-parameters have been trained and blended, we 
make an ensemble of these two models together by simply taking 
the average of the prediction scores of model 1 and model 2. This 
generates a stronger model. 

With more time, more sophisticated methods could certainly 
be used for getting better ensembles. 

3 EVALUATION RESULTS  
For our final result with an ensemble of two LightGBM 

models, we got an AUC score 0.72930 on the public leaderboard 
and increased the AUC score to 0.73015 on the private 
leaderboard, getting us 6th position. This means we did not overfit 

the public leaderboard. To achieve this, we mainly used three 
tactics: 
4. Early stopping: as shown in Table 5, we trained our models 

in a few iterations. As usual, this regularization technique 
helps getting robust models. 

5. Use private validation set. As discussed in sections 2.4.1 and 
2.4.2, we validated our models on our private validation set 
(in each cross-validation fold). We submitted our models to 
the public leaderboard parsimoniously to avoid learning it 
too much.  

6. Progressive increase of feature sets. We used a staged 
approach to incorporate features. When features did not bring 
performance increase on our validation set, we dropped them. 

In this section, we will now compare the performances of the 
models presented in section 3 and show the effect of blending and 
ensemble. 

In Table 6, we show the public and private leaderboards AUC 
scores of our two LightGBM models (1 and 2), blended with 10 
cross-validation folds and without blending. Of course, time 
consumption of a single model is much smaller than the cost for 
the ensemble (around 1/10 time cost of the final model, we show 
the time cost of each model in Table 6 too), while performance is 
degraded but still relatively good.  

In Table 6, the AUC performance of the best single model 
(LightGBM model 1 without 10-fold cross-validation) is 0.72787, 
which is not far from the performance of the final ensemble model 
(0.73015). The performances of the blended LightGBM model 1 
and LightGBM 2 (with 10-fold cross validation) on private 
leaderboard are 0.72930 and 0.72893. 

Table 6: AUC Score and Time Cost of Different Models 

Name Public 
LB 

Private 
LB 

Time 
(min) 

LightGBM model 1 without 
10-fold cross-validation  

0.72684 0.72787 60 

LightGBM model 2 without 
10-fold cross-validation 

0.72268 0.72350 62 

LightGBM model 1 (blend) 0.72892 0.72930 603 
LightGBM model 2 (blend) 0.72797 0.72893 622 
Ensemble of  models 1 and 2 0.72930 0.73015 1225 
 

The interesting part is not only the final private and public 
leaderboard scores themselves, but the step-by-step process of 
how this score is progressively increased. In our approach, we 
find that as we add more and more suitable features, the 
performance will increase step-by-step.  Some features can even 
give us a really large improvement. We show three main big 
improvements of our approach in Figure 4: the blue line shows the 
increasing AUC score in public leaderboard. There are mainly 
three big jumps in this process marked by A, B, C. In jump A, we 
mainly add SVD representations of user and songs features and 
tune the hyper-parameter of SVD representation. In jump B, we 
mainly blend the results of 10-fold cross-validation. In jump C, 
we mainly add similarity score features, CF features and SVD 



 

user-artist representation features. As we add more and more 
suitable features, the AUC performance increases step-by-step.  
Not all features helped. We tried time-based features, which did 
not work well, maybe because the precise timestamp was not 
provided. As we said, we evaluated features and only submitted 
our model with them to public leaderboard when they 
significantly improved performances on our private validation. 
Otherwise, we just dropped them from our candidate list. 

 

Figure 4 : Public LB AUC score along time 

 

 

Figure 5: Feature importance 

We also want to compare the importance between different 
group of features that we used in our final LightGBM model. In 
the Figure 5, we show the maximum Feature importance score 
(gain) in each feature group. All these feature groups are used in 
our final LightGBM model. They were introduced in Table 4 and 
§2.4.1. The context features are the most important features in this 
task. SVD representation features also have a very high 
importance score. That is the most important group of features in 
this feature engineering process. 

As the description of our approach shows, we spent most of 
our efforts on feature engineering, and used plain, simple, out-of-
the-box models (LightGBM) or ensemble techniques (average). 
Obviously, better models might have obtained better results. 
However, it is our strong belief that, in a limited timeframe, 
efforts are better spent on feature engineering than on 
sophisticated models.  

4 CONCLUSION 
Feature engineering is a really important and irreplaceable 

ingredient in a predictive analytics project. Especially when the 
size of dataset is not very large, feature engineering is extremely 
helpful to improve performances in most cases. Some features 
from feature engineering did not help or even hurt the 
performance of the model. However, with our process of 
progressive validation, we just dropped them. Obviously, when 
datasets are large, time costs may become an issue, since in our 
approach, we generate features to then evaluate and possibly 
retain them. The balance of costs versus performance increase has 
to be carefully evaluated in such cases. 

Because of different distributions between training and test sets, 
we used features computed on both training and test sets, thus 
actually leaking information from the future into our model (a 
practice certainly not recommended in general). This obviously 
might hurt performances on test set. For example, if we generate a 
feature for counting the number of users listening to each song, 
the performance will increase in validation set but decrease in test 
set. The reason is that the distributions of this feature between 
validation and test sets are significantly different. However, we 
had to mitigate the impact of the differing distributions taking that 
leakage risk when handling the feature engineering process. To 
limit this risk, we need to take extra care to avoid overfitting. 

What is left to do for challenges such as this one includes 
generating more time-dependent features to get better 
performances and certainly using neural network-based methods 
for their capacity to generate features, but we did not have time to 
complete our work on neural networks in this challenge. 

In our future work, we will try to make the feature engineering 
process more and more automatic and apply this automatic feature 
engineering process to other challenges. 
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