
Ensembling XGBoost and Neural Network for Churn Prediction
with Relabeling and Data Augmentation

PKU Fresher at WSDM CUP 2018 Churn Prediction

Chence Shi, Zheye Deng, Yewen Xu, Weiping Song, Yichun Yin, Jile Zhu, Ming Zhang∗
School of EECS, Peking University

{chenceshi,dzy97,xuyewen,songweiping,yichunyin,zhujile0918,mzhang_cs}@pku.edu.cn

ABSTRACT
This paper describes our solution in KKBOX’s Churn Prediction

Challenge, one of tasks in WSDM Cup 2018. The competition aims
at predicting whether the KKBOX’s users will churn after a period
of time. To build a competitive system, we first enrich training set
by data augmentation and relabeling, and then carefully design
specific features for this problem. By ensembling the models of
neural networks and XGBoost, our team PKU Fresher ranks 6th
among 575 teams on the final private board1.

1 INTRODUCTION
The goal of this competition is to predict whether a user will

churn after his subscription expires. The dataset used is fromKKBOX,
which is one of Asia’s leading music streaming services with mil-
lions of users, and it includes transactions of users, daily user logs
describing listening behaviors and user profile information. A user
may order or cancel service subscription at any time, which will
update the expiration date. One user is considered as a churn one,
if he or she doesn’t renew service subscription within 30 days after
the current membership expires. This competition uses Log Loss as
the evaluation metric which is described by following function:

loдloss = − 1
N

N∑
i=1

(yi log(pi ) + (1 − yi ) log(1 − pi )),

where N is the number of observations, yi is the binary target(1
means churn, while 0 means renewal) and pi is the predicted churn-
ing probability of the i-th member.

In this competition task, we design a framework to predict the
churn users, which includes data preparation, feature extraction
and model ensembling. Figure 1 shows the overview of our frame-
work. We first relabel some data in the origin training set, which
are incorrect according to their transactions. We also generate ex-
ternal training data within previous months by conducting data
augmentation. After data preprocessing, we respectively extract
the features from three original files (transaction, member, user-
log), representing category features by one-hot represetations and
concatenating these features. To enrich features, we also induce
non-linear and dense representations of features, by applying one
unsupervised neural model, Denoising Auto-encoder [7]. Finally,
we adopt two kinds of commonly-used classifiers as our basic mod-
els for churn prediction, i.e. gradient boosted decision tree models
(XGBoost [1], LightGBM [4]) and neural network models [3]. And
we generate our final submission by a linear combination of several
models.
∗Corresponding author
1https://www.kaggle.com/c/kkbox-churn-prediction-challenge/leaderboard

Cleaned

Data

Feature Denoising
Auto-encoder

XGBoost

Ensemble

Augment

Raw

Data MLP

Relabel

Figure 1: The overview of our framework.

The final evaluation results have been published on Kaggle. We
finally score 0.09743 and rank 6th among 575 teams.

2 DATA PREPARATION
In this section, we introduce how we conduct data preprocessing,

because the quality of data is critical for data mining tasks. We first
give a formal definition of churn users based on official statement
in Section 2.1. In addition, we generate our own labels and correct
some wrong labels in original training set confidently. At last, data
augmentation is performed for more training data, which empowers
us to design more complicated models.

2.1 Problem Definition
A user is churn as long as he has no new valid subscription

within 30 days after the current membership expires. Note that a
new subscription is not sufficient in case of immediate abolishment.
Given users whose subscription expires within the month of April
2017, we aim at predicting whether they will churn or not in the
following 30 days.

2.2 Relabeling
When studying the training set, we found about 14000 users

who were apparently renewal, yet labeled as churn incorrectly. For
example, we list the last few transactions of user A2 and user B3 in
Table 1.

Take user A as an example: her subscription expired at 2017/03/09
according to the first record. Next, there were two transactions of

2msno:dW/tPZMDh2Oz/ksduEctJbsz0MXw3kay/1AlZCq3EbI=
3msno:pBXnYkKeo1HldqKCHfKN61EEwwEdZa4fD6c2AfK4a2k=

https://www.kaggle.com/c/kkbox-churn-prediction-challenge/leaderboard


2

Table 1: Examples of contradiction between user transac-
tions and their original labels.

User Transaction Date Expire Date is_cancel

A 2017/01/09 2017/03/09 0
A 2017/03/07 2017/04/08 0
A 2017/03/28 2017/07/07 0

B 2016/10/25 2017/02/22 0
B 2017/02/27 2017/03/29 0
B 2017/03/30 2017/09/29 0

0

0.05

0.1

0.15

0.2

0.25

0

200000

400000

600000

800000

1000000

1200000

#churn #train Churn rate

Figure 2: Churn rate of eachmonth generated bywsdm-label
scala.

her renewal to 2017/07/07, which were not canceled, so new valid
subscription are observed within 30 days since her last expiration.
For some unknown reasons, both of user A and user B are labeled
as churn in the training set given.

In the stage of relabeling, we modify these incorrect labels to en-
hance data quality. The relabeling helped improve the performance
of our model, which is shown in the Experiment Section.

2.3 Data Augmentation
Data augmentation is one of the effective ways to reduce over-

fitting by increasing the amount of training data. We propose a
simple yet effective method of data augmentation, by generating
a lot of new training data within different months. Specifically, in
addition to two official data sets which contain the data of Feb and
Mar 2017, we generated other 13 months of data from Jan 2016
to Jan 2017, based on the transaction records. The churn rates of
each month are shown in Figure 2. It is noticeable that the time
shift against prediction point of some augmented data is quite large,
which may bring more noise. Consequently, instead of using all of
the generated data, we carefully select only a few months of data
based on the criteria of similar churn rate distribution.

3 FEATURE EXTRACTION
In this section, we detail the feature engineering process. The

features are extracted from transaction records, user logs and user
profiles. We also employ Denoising Auto-encode to induce the
non-linear features from the original ones.

3.1 Transaction
The following features are generated using the transaction his-

tory prior to the specific time boundary.

Characteristic of a single transaction.
In addition to the original value of the most recent transaction

record and some statistical features of the raw data (e.g. pay_method
which is converted to one-hot vectors, ave_plan_day, ave_plan_price,
cancel_ratio, ave_pay), we have also extracted some practical fea-
tures.

• pay_per_day, the value of actual_pay/plan_days
• plan_actual, the value of plan_prices − actual_pay
• auto_not_cancel_ratio, the ratio of transactions which are
auto pay and not cancel

• nopay_ratio, the ratio of free transactions
• discount_i(i=80,90,100), the ratio of transactions which sat-
isfy plan_price · i% ≥ actual_pay

Characteristic of all transactions.
We extracted two potentially useful features:
• ave_interval means the average of the interval between con-
secutive transactions

• max_expire_datemeans the maximum expire date in a user’s
transaction records

The churn information of last month.
Because we need to use the transaction data and the rules as we

mentioned in Section 2, we are going to classify these features here.
In this part, we consider about whether the user appeared in the
training data of last month and whether it was labeled as churn.
By this way, we can get three features: last_not_churn, last_churn,
last_not_in.

3.2 User logs
Our intuition is that the closer a record is to the predicted time,

the more helpful it is to predict whether the user will churn or
not. Besides, considering that a user’s behavior may change from
time to time, we generate user behavior features within different
window sizes. Thus, we extract features according to four periods,
i.e. a period of k month(s) from the month to be predicted, where
k ∈ {0.5, 1, 2, 4}. The features listed below are generated for each
period.

Features collected from the raw data.
We first generate some original features from the raw data and

each feature has two types: the total count and average count within
a period.

• num_25, the number of songs played less than 25% of the
song length

• num_50, the number of songs played between 25% to 50% of
the song length

• num_75, the number of songs played between 50% to 75% of
the song length

• num_985, the number of songs played between 75% to 98.5%
of the song length

• num_100, the number of songs played over 98.5%of the song
length

• num_unq, the number of unique songs played



3

• listen_time, the time a user spend listening to music

Features generated from the raw data.
We combine numerical features and generate some statistical

features which are the most important features in daily user logs.
• log_cnt, the aggregate number of daily user logs of a user
• song_cnt, the aggregate number of songs a user listened
• listen_frequency, calculated by the formula

listen_f requency = loд_cnt/duration

• song_per_day, the average number of songs a user listened
per day

3.3 Members
These features are from user information.
• city_i, whether the user is from i-th city, using one-hot en-
coding.

• bd_valid, whether his or her age is in [10, 60].
• bd_new, equals [bd5 ] if bd is valid.
• gender_str (str ∈ {male, f emale,none}), the gender infor-
mation.

• registered_via_i, the registration method.
• registration_init_time, the registration date, which is con-
verted into the number of days.

3.4 Denoising Auto-encoder
In addition to the above features, we also consider non-linear fea-

tures. These features are derived fromDenoisingAuto-encoder(DAE)
in an unsupervised manner, with original ones as input. Compared
with the linear features, the non-linear features can deal with curse
of dimensionality and capture some underlying information.

Specifically, let x̃ be the partially corrupted k-dimensional feature
vector of a certain user, while the size of the output vector y is the
same as x̃ . DAE aims to reconstruct the original representation x
by neural networks. We use a DAE with six full-connected layers,
where the first three layers are encoding layers and the last three
layers are decoding layers. The dimensions are 128, 96, 64, 96, 128,
respectively. When training, we do a feed-forward pass to compute
activations at all hidden layers, then at the output layer to obtain
an output y. To learn this model, the squared error loss between
the output y and the input x is used as the objective.

After training theDenoisingAuto-encoder, we use the 64-dimension
vectors in the middle layer as the non-linear features.

4 MODEL
In this section, we describe two basic models we used and explain

how to ensemble them.

4.1 XGBoost
We use XGBoost as our first model. Tree boosting is a highly

effective and widely used machine learning method, which has
been shown to give state-of-the-art results on many standard clas-
sification. It boosts performance by combining many weak tree
predictors. XGBoost is one of the most competitive models among
the competitions hosted by Kaggle. It is effective in dealing with a
large number of features and non-linear interactions between the

features and labels, which is suitable for churn prediction consid-
ering the features we have obtained. Moreover, it’s convenient to
get feature importance via XGBoost, which can help us to select
useful features. XGBoost has three types of booster, namely Gbtree,
Dart and Linear. Because of the non-linear between features and
labels, we adopt Gbtree and Dart booster respectively. The depth of
classifier is set to 7 and the learning rate is set to 0.02. The results
are shown in section 5.

4.2 Fully Connected Neural Network
The second model we used is a simple fully connected neural

network. Let x (0) be the k-dimensional feature vector of a certain
user. The input is followed by four fully-connected layers. The
first hidden layer has 512 units, the second hidden layer has 256
units and the third hidden layer has 128 units, the output layer is a
sigmoid layer and calculates the probability of churn. Layer l can
be represented as:

x (l ) = ReLU (W (l ) × x (l−1) + b(l ))

where x (l−1) ∈ Rnl−1 is the input vector of layer l ,W (l ) ∈ Rnl×nl−1
is the weight matrix, b(l ) ∈ Rnl is the bias vector, nl is the size of
vector x (l ).

During training, we employ batch normalization [2] to acceler-
ate the convergence. Besides, dropout [5] is used in each layer to
prevent overfitting.

4.3 Model Ensembling
Both XGBoost and neural networks have their own advantages,

for example, XGBoost can avoid over-fitting better while neural net-
work is able to learn more complicated features. Therefore, model
ensembling, which leaverages the superiority of both two models,
can be very powerful to increase performance on this prediction
task.

Based on the performance of each single model, we generate our
final submission by a linear combination of three models, which
can be represented as

Score = 0.4 × nn + 0.4 × xдb_without_dae + 0.2 × xдb_with_dae,

where nn denotes neural network and xдb_w/o_dae respectively
denote XGBoost models using and not using features generated by
Denoising Auto-encoder. The combination coefficients are carefully
tuned based on the performance of each single model on validation
set.

5 EXPERIMENTS
In this section, we first demonstrate the effectiveness of the

proposed data preparation, then we present the performances of
each single model and the ensemble model. To tune the hyper-
parameters, 5-fold cross-validation is used. We also visualize the
user vector extracted from neural network and give a detailed
discussion of five important features among the used features.

5.1 Performance of Data Preparation
As mentioned in Section 2.2, some labels of training data in

Mar 2017 are wrong. We correct these wrong labels and compare



4

Table 2: Performance of Models with/without Data Relabel-
ing.

Training Data Private Board score

Mar. 0.13163
Mar. + relabeling 0.10546

Table 3: Comparison of model performance using different
training data.

Training Data Private Board score

Mar. 0.10546
Mar. + Feb. 0.10342
Mar. + Feb. + Jan. 0.10202
Mar. + Feb. + Jan. + Dec. 0.10304

Table 4: Performance of different models on augmented
training data.

Model Private Board score

NN:512 × 256 × 128 0.10102
DAE 0.10303
XGBoost:Gbtree 0.09989
XGBoost:Gbtree + DAE 0.09959
XGBoost:Dart 0.10030
XGBoost:Dart + DAE 0.10010
Ensemble 0.09743

the performances of models trained with original data and rela-
beled data using Multilayer Perception. The results are presented
in Table 2, which shows that the relabeling achieves a significant
improvement.

The dataset provided by organizers includes a lot of historical
records, which allows us to do the data augmentation. To make
full use of the data, we generate the training data of Feb. 2017, Jan.
2017 and Dec. 2016 using the label script offered. Table 3 shows
the performance of a simple neural network (256 × 128 × 1) on
each dataset. We find that simply adding the training data close
to the month to be predicted can obtain a better performance, but
adding the data far from now may lead to a decrease in model’s
performance. Based on these observations, we included the data of
Feb. and Jan. into the new training set, which helps further improve
performances.

5.2 Model Performance
We elaborately modify the architecture of fully connected neural

network, tune the hyperparameters and achieved the best leader-
board score 0.10102 by it.We also train XGBoost classifiers (depth:7),
add low dimension features generated by DAE and achieved the
best single model score 0.09959. Based on model ensembling, we
finally scored 0.09743 on the private leaderboard and ranked 6th
among 575 teams.

Figure 3: Low dimension visualization of user vectors gener-
ated by Multilayer Perception.

Figure 3 shows the 2-dimension visualization of user vector
extracted from neural network generated by Largevis [6]. The churn
users are divided into clusters apart from the users that are evenly
distributed in the center of the picture. The figure indicates that
the model can predict churn for users of certain behavior, but for
those who act like most of the normal users, we still have to do
more work to improve model’s performance.

5.3 Feature analysis
Interpreting and analyzing important features enable us to gain

profound domain knowledge. Figure 4 show the top 20 most im-
portant features evaluated by XGBoost. Most of them have good
interpretability. Here we briefly interpret five important features.

Feature from transactions.
max_expire_date, a user’s max possible expire date so far, which

indicates the probability of being a long-time user.
last_trans_date, the latest transaction, which may indicate the

activity level of a user within a certain period.
ave_interval, the average interval between every two transac-

tions, which may indicate a user’s subscribing habit. People of large
ave_interval may renew their membership only when they need
service, which may result in churn in this task.

cancel_cnt, the number of cancellations, which may indicate
whether a user is satisfied with the service or not.

Feature from userlogs.
listen_frequency_k, a user’s activity level within a certain period,

which can directly reflect the demand of this kind of service.
From Figure 4, we can also see that most of important features are

extracted from userlogs and transactions, which reflects that user
behaviors are the most important information in churn prediction.



5

Figure 4: The 20 most important features evaluated by XG-
Boost.

6 CONCLUSION
In this paper, we describe our system in the KKBOX’s Churn

Prediction Challenge. We first conduct the data preprocessing, in-
cluding relabeling and data augmentation, then elaborately extract
features from three original files and apply Denoising Auto-encoder
to get non-linear features. After that, we ensemble gradient boost-
ing decision tree algorithms and neural networks to predict churn
users. Finally, we analyze some important features to gain domain
knowledge in this churn prediction task.

ACKNOWLEDGMENTS
This paper is partially supported by the National Natural Science

Foundation of China (NSFC Grant Nos.61772039, 61472006 and

91646202). The first three authors are supported by the Top-notch
talent program at Peking University.

REFERENCES
[1] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
785–794. https://doi.org/10.1145/2939672.2939785

[2] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32Nd International Conference on International Conference on Machine Learning
- Volume 37 (ICML’15). JMLR.org, 448–456. http://dl.acm.org/citation.cfm?id=
3045118.3045167

[3] A. K. Jain, Jianchang Mao, and K. M. Mohiuddin. 1996. Artificial neural networks:
a tutorial. Computer 29, 3 (Mar 1996), 31–44. https://doi.org/10.1109/2.485891

[4] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boost-
ing Decision Tree. In Advances in Neural Information Processing Systems 30,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.). Curran Associates, Inc., 3149–3157. http://papers.nips.cc/paper/
6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

[5] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15 (2014), 1929–1958. http:
//jmlr.org/papers/v15/srivastava14a.html

[6] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. 2016. Visualizing Large-
scale and High-dimensional Data. In Proceedings of the 25th International Confer-
ence on World Wide Web. International World Wide Web Conferences Steering
Committee, 287–297.

[7] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked Denoising Autoencoders: Learning Useful Rep-
resentations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn.
Res. 11 (Dec. 2010), 3371–3408. http://dl.acm.org/citation.cfm?id=1756006.1953039

https://doi.org/10.1145/2939672.2939785
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://doi.org/10.1109/2.485891
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://dl.acm.org/citation.cfm?id=1756006.1953039

	Abstract
	1 Introduction
	2 DATA PREPARATION
	2.1 Problem Definition
	2.2 Relabeling
	2.3 Data Augmentation

	3 Feature Extraction
	3.1 Transaction
	3.2 User logs
	3.3 Members
	3.4 Denoising Auto-encoder

	4 Model
	4.1 XGBoost
	4.2 Fully Connected Neural Network
	4.3 Model Ensembling

	5 Experiments
	5.1 Performance of Data Preparation
	5.2 Model Performance
	5.3 Feature analysis

	6 Conclusion
	Acknowledgments
	References

