
Prediction of repeated listening by means of GBDT-based
approach

WSDM – KKBox’s Music Recommendation Challenge 2018

Vasiliy Rubtsov
National Research University Higher

School of Economics
vrubcov@hse.ru

Dmitry I. Ignatov
National Research University Higher

School of Economics
dignatov@hse.ru

Anvar Kurmukov
National Research University Higher

School of Economics
kurmukovai@gmail.com

ABSTRACT
The proposed problem at WSDM Recommendation Challenge 2018
was to predict whether or not a user will listen a song repetitively af-
ter the first observable listening event. This paper presents a model
which achieves ROC AUC 0.74688 (third place in the competition).
The reproduced code solution is available at github1.
ACM Reference Format:
Vasiliy Rubtsov, Dmitry I. Ignatov, and Anvar Kurmukov. 2018. Prediction
of repeated listening by means of GBDT-based approach: WSDM –
KKBox’s Music Recommendation Challenge 2018. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 3 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The challenge was to build a music recommendation system using a
dataset from KKBOXmusic streaming service. The training data set
consists of information about the first observable listening event for
each unique user-song pair within a specific time duration. Meta
data of each unique user and song pair is also provided. The train
and the test data are selected from users listening history in a given
time period.

The paper is organized as follows: in section 2, we describe the
challenge task and the data provided by organizers along with
the evaluation metric used; in section 3, we describe validation
methodology, feature engineering process preparation, and intro-
duce the proposed recommender model along with its components.
Section 4 concludes and discusses additional possibilities to fine-
tune the model and some peculiarities of the gained competition
experience.

2 DATA
2.1 Data description
The provided data contains information about the first listening
of a musical track by a particular user. In addition to user’s and
track’s indices, the contextual information is provided: the name
of the tab where the event was triggered, the name of the layout a
user sees, and the entry point a user first plays music on the mobile
application.

Moreover, user profile includes the following information: city,
age, gender, registration method, registration date, and expiration

1https://github.com/VasiliyRubtsov/wsdm_music_recommendations

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

date. The track’s related data are provided as well: song length,
genre, artist name, composer, lyricist, and language.

2.2 Competition details
The competition problem was formulated as follows: we need to
predict the chances of a user listening to a song repetitively after
the first observable listening event within a time window.

The evaluation metric was ROC AUC.

3 METHODS
In this section, we present our approach to the challenge in details.
We describe the validation scheme used in our experiments, and
talk about the features that we extracted from the challenge dataset
as well as the models built on these features.

All the experiments were conducted on Debian machine with
Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz (28 cores, 56 threads)
and 256 GB of RAM memory. Our method was implemented in
Python.

3.1 Training procedure

time
all data

history for test test
history for train1 train1

history for train2 train2

Figure 1: Training procedure.

The whole training procedure is shown in Fig. 1. This scheme re-
lies on three important ideas. First, we found out that observations
are sorted in historical order (thus the row index is a time-related
feature), we make use of this property and split our data based
on the row index. Second, we split a training set into three parts:
history, traini , and validation (around 20% of all labeled data), we
extract features for traini from history part (this will be described
later in section 3.2), next we train a model on traini and choose
its parameters using validation set. The final idea is data augmen-
tation: extracting features from historical data left us with a few
observations for the train set, thus we use train1 and train2. In or-
der to avoid overfitting, we do not combine them but train models
independently on both sets and blend their predictions after (see
Section 3.4 on the recommender model for details).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Vasiliy Rubtsov, Dmitry I. Ignatov, and Anvar Kurmukov

For final training we take train set of the same size as test set,
and the remaining labeled data were used as history (to generate
features for training).

3.2 Feature engineering
Since almost all the features are categorical, the main idea here lies
in grouping by those features, their pairs, and triples followed by
some aggregation function.

Supervised features. Since these features are calculated with
the presence of the target variable, we use only historical informa-
tion.

• Mean. We group data by categorical features, their pairs, and
triples and then calculate the average by the target value
within the groups.

• Linear regression. We perform linear regression by time for
different groups: user, user-artist, user-genre, user-source_type,
user-composer, user-language, and song_id. For example, for
user i - genre j group (all observations which contain both
user i and genre j) we perform one dimensional linear regres-
sion with time as X and original target variable as y. This
allows us to catch simple intra group trends.

• Matrix factorization. We also use LightFM [3] implementa-
tion of matrix factorization with logistic loss and consider a
particular user within different contexts as separate users,
but use user id as a feature.

ruic = buc + bu + bi + ⟨puc + pu ,pi ⟩, where

ruic is the rating given by the user u in the context c for
the item i , b ∈ R is the bias, and puc ,pu ,pi ∈ Rn are the
latent vectors for the user-context, the user and the item,
respectively.

Unsupervised features. This group of features does not use
the target variable to compute, thus we can use the whole data set.

• Count. This type of feature contains the number of occur-
rences for the categorical features, the co-occurrences of
their pairs and triples.

• Time from the previous listening answers how much time
(rows) has passed since the last listening event for a given
category (pair or triple).

• Time before the next listening is the time before next lis-
tening event inside a category (pair of categories or their
triples).

• Count from future shows howmany times category/pair/triplet
occurred before the end of the whole time period of the data
(history).

• Count from past shows how many times category occurred
since the end of a history.

• Last time difference is the time to the last listening event
within a category.

• Share of unique songs is the fraction of songs of a given
artist listened by a particular user.

• Time from test period is the time passed since the end of the
available history.

• Part of a song listened is the song length divided by the time
to the next listening event.

• Song length.

• User age.
• Registration date.
• Expiration date.

In total 1350 features were generated. Table 1 shows the top
20 features according to the XGBoost [1] feature importance with
the gain importance type, where model is fit on train1 with matrix
factorization feature.

Table 1: Top 20 features

Feature Gain

Matrix factorization 4116.54
Mean (genre_ids, source_screen_name, source_type) 1897.92
Last time difference (artist_name, language, msno) 1502.82
Last time difference (artist_name, genre_ids, msno) 1187.89
Mean (genre_ids, lyricist) 1071.63
Time to the next listening (msno, source_type) 636.76
Mean (source_system_tab, source_type) 588.12
Mean (gender, song_id) 581.72
Mean (city, song_id) 572.86
Mean (artist_name, composer, lyricist) 570.04
Mean (genre_ids, language, source_screen_name) 512.88
Count from future (registered_via, song_id) 495.69
Time to the next listening (msno, source_system_tab) 487.80
Count from future (song_id, source_type) 462.39
Mean (gender, registered_via, song_id) 458.42
Count from future (song_id) 454.10
Time from the previous listening (msno) 412.73
Mean (gender, source_screen_name, source_type) 381.84
Mean (language, msno, source_screen_name) 380.28
Mean (registered_via, source_system_tab) 361.06

3.3 Recommendation model
We train Catboost [2] and XGBoost on train1 and train2 datasets
with and without matrix factorization features. This training results
in 8 models, which are blended [4] then as follows:

α1p1 + α2p2 + . . . + α8p8, where

pi is the probability of listening returned by i-th model. The
coefficients are fit based on validation sets.

In Table 2 the performance of each model is shown on a private
leaderboard.

The model blending result in 0.74688 of ROC AUC.

4 DISCUSSION
The main task of this competition was to predict repeated song
listening by users. It was assumed that model trained for this pur-
pose should be used to recommend a track for a user that will be
listened again. However, it seems that listeners use recommender
service of streaming audio to find new music compositions that are
similar to those they listened to before; that is they want to discover
something new. However, the model does not fit that purpose.

The qualitymetric was ROCAUC, which is used for classification.
However, usually a recommender should be able to rank items for

Prediction of repeated listening by means of GBDT-based approach Conference’17, July 2017, Washington, DC, USA

Table 2: Single model’s score

Model Train set Matrix factorization feature Score

XGBoost 1 Yes 0.74421
XGBoost 1 No 0.74377
XGBoost 2 Yes 0.74380
XGBoost 2 No 0.74331
Catboost 1 Yes 0.74496
Catboost 1 No 0.74441
Catboost 2 Yes 0.74451
Catboost 2 No 0.74384

a target user; thus, the used metric may not be suitable for such a
system. As an alternative, one can use ROC AUC that is averaged
by users.

It is worth noting that in this competition there were no strong
shake-up between the public and the private leaderboards and a
good correlation between the validation set and the leaderboard
was present; that effects allowed us to test all the hypotheses on
the validation set.

REFERENCES
[1] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. 785–794.
https://doi.org/10.1145/2939672.2939785

[2] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2017. CatBoost:
gradient boosting with categorical features support. In NIPS Workshop on ML
Systems.

[3] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recom-
mendations. In Proceedings of the 2nd Workshop on New Trends on Content-Based
Recommender Systems co-located with 9th ACMConference on Recommender Systems
(RecSys 2015), Vienna, Austria, September 16-20, 2015. (CEUR Workshop Proceed-
ings), Toine Bogers and Marijn Koolen (Eds.), Vol. 1448. CEUR-WS.org, 14–21.
http://ceur-ws.org/Vol-1448/paper4.pdf

[4] Andreas Töscher, Michael Jahrer, and Robert M. Bell. 2009. The BigChaos Solution
to the Netflix Grand Prize.

https://doi.org/10.1145/2939672.2939785
http://ceur-ws.org/Vol-1448/paper4.pdf

	Abstract
	1 Introduction
	2 Data
	2.1 Data description
	2.2 Competition details

	3 Methods
	3.1 Training procedure
	3.2 Feature engineering
	3.3 Recommendation model

	4 Discussion
	References

