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ABSTRACT

On-line music streaming services, like KKBOX, is bringing
great convenience for users to get access to all kinds of mu-
sic, while the hierarchical data describing the songs and the
random interests of users still make it a challenge for algo-
rithms to make accurate recommendations, especially with-
out enough historical data. In the WSDM - KKBOX’s Mu-
sic Recommendation Challenge, WSDM and KKBOX were
challenging people to predict the chances of a user listen-
ing to a song repetitively, under the condition that many
users/songs are cold-started. In this paper, we describe
our solution to the task. Our solution comprised an ensem-
ble of different models, including Field-aware Deep Embed-
ding Networks and Gradient Boosting Decision Trees. We
achieved an AUC score of 0.74787 on the Private Leader-
board, and finished the first place in the competition.
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1. INTRODUCTION

With the rapid development of on-line music streaming
services, people can get access to a great many songs of all
kinds of genres in a convenient manner. The same person
could listen to the Beatles, Vivaldi, and Lady Gaga on their
morning commute, which was hardly conceivable in the past.
By mining the massive listening records, music streaming
service providers can make personalized recommendations
to users, thus relieve the information overload.

However, the trends in music are always evolving. New
songs and new artists emerge every week, which puts a great
challenge to recommendation algorithms. Without enough
historical data, how would an algorithm know if listeners will
like a new song or a new artist? And, how would it know
what songs to recommend to brand new users? WSDM has
challenged competitors to build a better music recommenda-
tion system with a donated dataset from KKBOX', which is
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Asia’s leading music streaming service, holding the world’s
most comprehensive Asia-Pop music library with over 30
million tracks.

The dataset contains 7,377,418 records for the first observ-
able listening events in the training set, 2,556,790 records in
the testing set, and the goal is to predict the chances of a
user listening to a song repetitively within a time window
after the first observable listening event was triggered. The
dataset involves 34,403 distinct users where 10.60% of the
users do not appear in the training set, and 419,839 distinct
songs where 14.26% of them do not appear in the training
set. The metadata of users and songs is also provided. Based
on the observation from competitors, the training set cov-
ers a range of time from mid-August 2016 to mid-January
2017, and the testing set is from mid-January 2017 to late
February 2017.

Based on our understanding, the problem has the follow-
ing properties:

e Missing not at random. Some user-song pairs can
be observed and some not. If a user-song pair appears
in the dataset, we can tell that the user has listened
to the song at least once, which means that the user is
more or less interested in the song. As a result, the co-
occurrence of users and songs contains rich information
about user preference and song characteristics [18].

e Time-sensitive. Since the dataset covers a long range
of time, the pattern might evolve a lot from the be-
ginning to the end. This makes the training/testing
data follow more or less different distributions, and is
important for the validation strategy and feature en-
gineering.

Based on these properties, we propose to incorporate Field-
aware Deep Embedding Networks (FDEN) and Gradient
Boosting Decision Trees (GBDT) to make recommendations.
GBDTSs are greedy methods and can fit the pattern in the
head flow well, while FDENSs explore the broad combinations
of features, thus are better at finding the pattern hiding in
the flow of the long-tail. As a result, the ensemble based
on the predictions given by FDENs and GBDTs can give
a significant boost to each of them. Finally we were able



to get 0.74787 on the Private Leaderboard, and finished the
first place in the competition.

The rest of the paper is organized as follows: Section 2
summarizes some related work. Section 3 describes the over-
all approach and some important feature engineering meth-
ods. Section 4 introduces the detailed structure of the FDEN
and Section 5 introduces the GBDT model. Section 6 pro-
vides an overview of the evaluation results, and Section 7
draws the conclusion.

2. RELATED WORK

Music recommender systems have been an active research
topic for many years [16]. Cheng et al. [4] proposed a location-
aware topic model mining the common features of songs that
are suitable for a venue type to make location-aware music
recommendations. Rosa et al. [14] extracted users’ senti-
ments from social networks and focused on their relation-
ship with personalities to infer music taste and preferences.
Liebman et al. [11] proposed a novel reinforcement-learning
framework for music recommendation that does not recom-
mend songs individually but rather playlists. Schedl intro-
duced the LFM-1b dataset of more than one billion music lis-
tening events created by more than 120,000 users of Last.fm
for music retrieve and recommendation in [15].

Beyond the field of music recommendation, applying deep
learning to make recommendations also attracts a lot of re-
searchers’ attention. Cheng et al. [3] jointly trained wide
linear models and deep neural networks to combine the ben-
efits of memorization and generalization for recommender
systems. Wang et al. [20] tightly coupled deep neural net-
works and collaborative filtering to make more effective rec-
ommendations. Zhou et al. [22] proposed a Deep Interest
Network to represent users’ diverse interests with an inter-
est distribution and make better predictions on the click
through rate.

In this paper, we introduce a tailored structure of neural
networks called Field-aware Deep Embedding Network for
music recommendation. It can serve as a significant comple-
ment to GBDTs and boost the performance by ensembles.

3. OVERALL FRAMEWORK AND FEATURE

ENGINEERING

In this section, first the overall framework of our approach
is presented, and then some important feature engineering
methods are introduced.

3.1 Opverall Framework

As described in the Introduction, we use an ensemble of
FDENs and GBDTs. Since the data is time-sensitive, stack-
ing ensemble [5] and blending ensemble [21] is not working
well, so we use a relatively simple form of ensemble. The
final score is a weighted average of predictions from the two
kinds of models, i.e.,

$COT€ensemble = 0.4 * scorerpen + 0.6 * scoregppr, (1)

where the weights are tuned based on scores from the Public
Leaderboard.

The predictions of FDENs (i.e., scorerpen) are from a
bagging ensemble using the arithmetic mean of many net-

works, each of which has slight differences on hyper-parameters,

including the forms of the activations, the £2 regularizations,
the number of nodes in hidden layers and so on. Besides, we

also tried training the models with slightly different feature
sets to get more diversity for the ensemble.
As for GBDTs, they are relatively insensitive to the change

of hyperparameters, so we only use the ensemble using weighted

mean of GBDTs with slightly different feature sets. The
weights are tuned based on the Public Leaderboard.

Due to the properties of the models, FDENs and GB-
DTs give quite uncorrelated predictions. GBDT's are greedy
methods, and always captures the pattern in the head flow
first, and then the trees behind can finally fit the records in
the tail flow. While FDENS, in contrast, explore the broad
combinations of features, so they are better at fitting the
pattern in the tail flow, but the predictions on the records
from the head flow might be influenced by the noise. As a
result, the ensemble of FDENs and GBDTs can take good
care of both the head flow and the tail flow, thus making a
significantly more accurate recommendation?.

3.2 Feature Engineering

Here we describe some important and effective features
we use.

3.2.1 Conditional Probability / Expectation Features

Music recommender systems often evolve a lot of cat-
egorical features, like user_id, song_id, language, city,
artist_name and so on. Given one feature, the conditional
probability of another feature can give rich information about
users, songs, and the context.

For example, P(source_type|user_id) can describe whether
the user listened to the song through the entry point that
he was used to or not. P(source_type = album|user_id)
and P(source_type = online-playlist|user_id) can also
describe the habit of the user, which contribute a lot to the
user portraits.

Similarly, for numerical features, we can compute the con-
ditional expectations as features, and what’s more, the con-
ditional standard deviations can also help. For example,
E(song_length|user_id) and o(song_length|user_id) can
be used to describe the preference and habit of a user.

3.2.2 SVD Features of Co-occurrence Matrices

As mentioned in the Introduction, the data is missing-
not-at-random. So the co-occurrence matrices contain rich
information. We construct a user-song co-occurrence matrix
and a user-artist co-occurrence matrix, and use the Singu-
larly Valuable Decomposition (SVD) algorithm to find the
most important components as features. Specifically, to sup-
press the large values in the user-artist matrix, a calibration
is adopted with the following equation:

. o 140.3 log(cntuser,artist)a CNtuser,artist > 0
user,artist
07 cntuser,artist =0

where cntyser,artist indicates how many times the user first
listened to songs of the certain artist.

3.2.3 Timestamp Related Features

Since the data is ordered chronologically, we can use the
index as the timestamp. This feature can help the model
find the pattern evolution during the long period of time
within the training set. Furthermore, we can also count the

2Codes are released at https://github.com/lystdo/Codes-
for-WSDM-CUP-Music-Rec-1st-place-solution
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Figure 1: Overview of the proposed Field-aware Deep Embedding Networks.

Song Field

Context Field

The inputs are divided into

three fields, and the structures of different fields are slightly different. For demonstration, we only present a

few features in the figure.

user/song activity within a time window regarding a record
of the first observable listening event.

3.2.4 User Behavior Features

Since the algorithm is applied after the first listening event,
we can obtain the songs that the user first listened to before
and after the event was triggered. Using these features helps
us describe the user’s temporary interests, which are impor-
tant for predicting the probability of recurring listening.

4. FIELD-AWARE DEEP EMBEDDING NET-
WORKS

In this section we, describe the structure of the proposed
Field-aware Deep Embedding Networks, and the training
method we used.

4.1 Overview of the Structure

The overview of the proposed Field-aware Deep Embed-
ding Networks is illustrated in Figure 1. Minor details are
omitted.

In the figure, “Activation with Batch Normalization” [§]
stands for layers that perform the following transformation

ABN(xz) = Activation(BatchNormalization(zW + b))

and we used a variety of activations in the task. While
“Linear” stands for layers performing linear transformations
only, i.e.,

Linear(x) = *W + b.

The layer “Dot” compute the inner product of the two
inputs, i.e.,

Dot(z,y) = zy ",
and the layer “Normalized Dot” compute the cosine similar-
ity of the two inputs, i.e.,

él?yT

NormalizedDot(x, y) = TR

4.2 Key Properties of the Network Structure

Here we discuss some important properties about the struc-
ture.

4.2.1 Field-aware Connections

The inputs are divided into 3 groups, i.e., user field, song
field, and context field. The structure of each field is slightly
different from each other. High-level features are extracted
before they are concatenated together. This method can
reduce the number of free parameters and prevent some un-
expected feature combinations.

We also need to note that, there are some connections
among the very bottom of the fields. For example, we com-
pute the normalized dot products (i.e., cosine similarities) of
the components of the currently-listening song and the last
song the user listened to. These connections are built based
on our intuitions.

4.2.2 Trainable Embeddings for Categorical Features

We use trainable embeddings with /2 regularizations for
categorical features, which can map the categorical features
into a multidimensional space. The embeddings are ini-
tialized randomly, and trained through back propagations.
Compared with one-hot encoding, this can also reduce the
number of free parameters. With the help of shared weights
in the latter layers and ¢2 regularization, a better ability for
generalization can be obtained.

4.2.3  Offsets for Users

In the user field, the final representations are not only
based on the metadata of users. We allow an offset be-
tween the final representations and the predicted results
from the metadata [1, 20].With the help of ¢2 regulariza-
tion, the model can automatically learn that, if the data
for a user is sufficient, the representations of the user rely
more on back propagations from the targets, while if not,
rely more on the metadata.

We also tried allowing offsets for songs, but got little im-



provements, mainly because that the data for songs are far
more sparse.

4.2.4 Dot Products for User-Song Pairs

Taking inner product can give better nonlinearity without
adding too many free parameters. It can help fasten the
convergence and give better results. Some work also suggests
using element-wise multiplication or even outer product [13],
but it requires more data to prevent overfitting.

4.2.5 Densely Connections at the Head Model

Inspired by the Densely Connected Convolutional Net-
works [7], we use densely connections after the layer where
the outputs of the three fields are concatenated. Densely
connections introduce direct connections between any two
layers at the head model, thus can encourage more feature
reuse and improve the parameter efficiency.

4.3 Model Training

In this model, we use the RMSProp algorithm with p =
0.9 as the optimizer. The learning rate decays at a fixed
factor every epoch, i.e.,

lrate = lrateg * decayep“h’"”m

To make good use of the parallel computing power of
GPUs and get predictions as fast as possible, the batch size
is set to 8192. Apart from the batch normalization and the
£2 regularization for embeddings, we apply dropout [17] for
regularization before the output layer. The dropout rate is
set to 0.5.

Since neural networks are sensitive to the initialization, we
use a bagging ensemble to get stable and repeatable results
for validation. The best parameters are chosen according to
local validation by random searching.

To encourage more diversity for the ensemble, we tried
multiple forms of activations, including ReLLU, LeakyReLU,
PReLU, tanh and ELU. The numbers of hidden units also
change accordingly.

S.  GRADIENT BOOSTING DECISION
TREES

Gradient Boosting Decision Tree is widely considered as
one of the most powerful and commonly used machine learn-
ing techniques, and there are quite a few effective implemen-
tations, including XGBoost [2], pGBRT [19] and so on. In
this paper, we use LightGBM [10], a highly efficient gradi-
ent boosting decision tree implementation by Microsoft Re-
search. Light GBM accelerates the training process through
Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB), and can achieve almost the same
accuracy with far less time consuming.

Unlike neural networks, GBDT splits the data into two
parts in a tree node according to only one feature, thus some
linear combinations of features can also help. We conduct
some linear combinations of the features based on our in-
tuitions. Except that, the features for FDENs and GBDTs
are almost the same.

To encourage more diversity for the ensemble, we tried
using weighted average of the predictions of GBDTs with
slightly different subsets of features. The weights are tuned
based on the Public Leaderboard. This method gives some
significant improvements.

Table 1: Information about the Dataset

Item Number
Records in the training set 7,377,418
Records in the testing set 2,556,790
Distinct users in total 34,403
Distinct users in the training set 30,755
Distinct songs in total 419,839
Distinct songs in the training set 359,966
Distinct artist in total 46,373
Distinct artist in the training set 40,583

6. EXPERIMENTS

In this section, we first introduce the dataset, then the
validation setup is discussed. Procedures for feature selec-
tion and model tuning are presented later. The evaluation
results and a visualization of artist embeddings are listed
lastly.

6.1 Dataset

KKBOX is the leading music streaming services in Asia.
In this challenge, we conduct experiments using the do-
nated dataset from KKBOX. Detailed information about the
dataset is summarized in Table 1.

Based on the observation from competitors, the dataset
covers quite a long range of time, i.e., the training set is from
Aug. 2016 to Jan. 2017, and the testing set is from Jan.
2017 to Feb. 2017. During the time, many new users joined
the ecosystem, and many new songs emerged. As a result,
in the testing set, 7.20% records involve users that do not
appear in the training set, 12.52% records involve songs that
do not appear in the training set, and up to 18.90% records
involve users or songs that do not appear in the training set.
This phenomenon calls for effective feature engineering from
the metadata and user-song co-occurrence.

6.2 Validation Setup

As mentioned before, the training set and testing set are
split based on time, and cover a long range of time. There-
fore, we cannot assume that the pattern stays the same from
the beginning to the end. As a result, cross-validation is not
suitable for this problem.

Since the data is ordered chronologically, we use the last
20% data for validation, and when we generate the predic-
tions for the testing set, all the data with labels are used to
train the models.

To mitigate information leakage from the future to the
past, when the features for validation are generated, only
the records in the training set is used. This can help us get
more reliable validation results.

6.3 Feature Selection and Model Tuning

For feature selection, we use the feature importance re-
ported by Light GBM. Unimportant features are dropped di-
rectly. The best threshold is based on local validation. Our
final models for LightGBM use about 400 features, most
of which are SVD components, and conditional probability
features. We use the first 48 components from user-song co-
occurrence matrix, and the first 16 components form user-



Table 2: Evaluation Results on the Leaderboard

Method Private Gain over Public Gain over
AUCRroc Single Model AUCRgoc Single Model

Logistic regression with little feature engineering 0.66735 - 0.66527 -

Single FDEN 0.72787 - 0.72846 -

5-ensemble of FDENs with the same hyperparameters 0.73341 0.76% 0.73769 1.27%

5-ensemble of FDENs with different hyperparameters 0.73716 1.28% 0.73953 1.52%

25-ensemble of FDENs with different hyperparameters 0.73939 1.58% 0.74185 1.84%

Single GBDT 0.74277 - 0.74431 -

3-ensemble of GBDTs with slightly different feature sets 0.74389 0.15% 0.74569 0.19%

Ensemble of single FDEN and single GBDT 0.74390 — 0.74549 -

Ensemble of 25-ensemble FDEN and 3-ensemble GBDT  0.74695 0.41% 0.74916 0.49%

Our best submission before the deadline 0.74787 0.53% 0.75001 0.61%

artist co-occurrence matrix.

The best hyperparameters are obtained by random search-
ing on the validation set, and at the validation stage the
learning rate for GBDTs is 0.5°. When the predictions on
testing set are generated, for LightGBM models, it takes
about 8 to 10 hours for training with two Intel Xeon E5-
2650 v2 with a learning rate of 0.1, and about 40 minutes
for prediction. For a single FDEN model, it takes about 8 to
20 minutes with an NVIDIA GeForce GTX 1080, depend-
ing on how large the model is. Prediction generation with
FDEN takes less than 1 minute.

6.4 Evaluation Results

Based on the aforementioned setup, we conduct experi-
ments on the testing set. Results on the Leaderboard are
listed in Table 2. For single FDEN models and 5-ensemble
FDENS, we report the results with the best public score.

Before the results of the proposed methods are analyzed,
we introduce the results of a simple logistic regression [9]
as a baseline. This method uses the one-hot encoding re-
sults of 11 categorical features, including user_id, song_id,
source_system_tab, source_screen_name, source_type,
city, gender, registered_via, artist_name, language and
genre_id, as well as two numerical features, including age
and song_length. The hyperparatmer for ¢2 regulariza-
tion is tuned based on local validation. This simple method
gives 0.66735 on Private Leaderboard, and 0.66527 on Pub-
lic Leaderboard, which can help us gain a better knowledge
of the dataset.

From the table, we can get that a single FDEN gives rel-
atively poor results, while 5-ensembles can already give a
very significant boost. Besides, we find that changing the
hyperparamters, including the activation, number of nodes,
£2 regularization, learning rate and so on, can encourage
more diversity between the predictions of FDENSs, thus we
witness the results of 5-ensembleof FDENs with different hy-
perparameters outperforms the 5-ensemble of FDENs with
the same hyperparameters significantly, although the single
models might be a little weaker. The 25-ensemble of FDENSs
is the 5-ensemble of 5-ensembles of FDENs with different hy-
perparameters, which means we repeat the experiments for 5

3Hyperparameters are also released with the codes.

times with different random seeds, and then average the re-
sults. This gives about 0.30% more improvement on Private
Leaderboard. Compared with the single model, 25-ensemble
can improve the score by 1.58% on Private Leaderboard. We
can get higher scores with even larger ensembles.

We need to note that, the hyperparameters are not op-
timized for the single model performance, so the results of
single FDEN could be improved by using a larger model
with stronger regularizations, smaller batch size and learn-
ing rate, and more epochs for training.

For GBDT models, we find that the results are a lot
more stable and insensitive to hyperparameters compared
with neural networks. To encourage more diversity, we tried
training the models with slightly different feature sets. The
differences between the subsets are mainly some count fea-
tures with high importance based on the report by Light-
GBM. According to our experiments, 3-ensemble of GBDTs
with slightly different feature sets can give about 0.15% im-
provement over a single GBDT.

During the evaluation, we find that the predictions of
FDENs and GBDTSs are quite uncorrelated. For example,
the correlation coefficient between the predictions of 25-
ensemble of FDENs and the predictions of 3-ensemble of
GBDT is only 0.9156. Considering that the AUC scores are
beyond 0.74, this is a very small correlation coefficient. We
use Equation (1) to ensemble the results, and this gives an
improvement of 0.41% over 3-ensemble of GBDTSs, and an
improvement of 1.02% over 25-ensemble of FDENs.

Our best submission before the deadline achieved 0.75001
on the Public Leaderboard, and 0.74787 on the Private Leader-
board, which finished the first place in the competition. The
best submission is an ensemble of more models over different
feature sets.

6.5 Embedding Visualization

In order to gain an intuitive understanding of the embed-
dings, we visualize the learned embeddings of the Top 25
most popular artist with t-SNE [12] in Figure 2*.

As illustrated in the figure, Fish Leong and Hebe are very
close to each other since they are both famous for sweet love
songs, and Fason Chan and Jacky Cheung become close in

4We drop the SVD components of user-artist co-occurrence
matrix when training the models for visualization.
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Figure 2: Visualization of the learned embeddings
of the Top 25 most popular artist with t-SNE.

the middle because they both have magnetic male voices.
Besides, Stone and Jam Hsiao are both famous for rock
music, Fish Leong and Stone cover many songs with each
other, Rainie Yang and aMEI are both singers with explo-
sive expressions, and Yoga Lin and Eric are both young lyric
singers. This shows that the learned embeddings can reflect
the styles of artists to some extent.

7. CONCLUSION

In this paper, we describe our approach to the WSDM -
KKbox’s Music Recommendation Challenge. We use an en-
semble of Field-aware Deep Embedding Networks and Gra-
dient Boosting Decision Trees, with some feature engineer-
ing. Thanks to the nature of the two methods, we gain a
very significant improvement after ensemble.

As the main goal of the challenge is to produce the best
performance with the provided data, we did not consider
the computation cost for generating the predictions. So
the final predictions were based on a great many base mod-
els. Besides, since the data is time-sensitive, we found that
supervised ensemble methods, like stacking ensemble and
blending ensemble, didn’t give better results. So the final
framework for the ensemble is relatively simple. With the
help of FDEN and GBDT, we were able to achieve an AUC
score of 0.74787 on the Private Leaderboard finally.

Due to time constraints, we didn’t try a lot of cross prod-
uct features and methods of optimizing AUC directly [6], so
there should be some room for further improvement under
this framework. Another promising avenue of research is
transfer learning. Since the data is missing-not-at-random,
building neural networks to predict the first listening event
and recurring listening event collectively might give some
further improvement.
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