

KKBOX’s Music Recommendation Challenge Solution with Feature
Engineering

Jianyu Zhang Françoise Fogelman-Soulié
School of Computer Software

Tianjin University
(edzhang, soulie) @tju.edu.cn

ABSTRACT
Recommendation is widely used in our daily life. Especially in the
e-commerce area, a good recommendation system can help users a
lot. In this paper, we introduce our approach for the KKBOX’s
Music Recommendation Challenge. In this challenge, we were
asked to build a recommendation system that can predict whether
a user will listen again to a song within one month after the user’s
very first observable listening event in KKBOX. Our solution was
mostly based upon systematic and extensive feature engineering
and an ensemble of simple boosting tree classification algorithms,
both of which could easily be used in industry. However, we did
not use timestamp of user-song interactions here, since this was
hidden by Kaggle to avoid leakage.

KEYWORDS
Feature engineering, recommender systems, gradient boosting
tree, SVD.

1 INTRODUCTION
In the WSDM Cup KKBOX’s Music Recommendation

Challenge [6], we had to build a recommendation system that can
predict whether a user will listen to a song again within one month
after the user’s very first observable listening event in KKBOX. If
the user did not listen to the song again within one month, the
target variable will be 0, and 1 otherwise. The training and test
sets consist in unique user/song pairs selected from users’
listening history in a certain period, split by time. The test set is
split 50/50 between public and private leaderboards; obviously,
targets are unknown in the leaderboards test set, but the data
distribution is, and we can thus use it as we will show later. At the
time of the competition, submissions were evaluated on the public
leaderboard, while

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the firs page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
WSDM 2018, February 5-9 2018, Los Angeles, California, USA
© 2018 ACM. ISBN xxxx. . . $15.00
DOI: http://dx.doi.org/xxxx

final results were obtained on the private leaderboard. As usual in
such challenges, one must take particular care to avoid learning
the public leaderboard too well at the risk of overfitting and
obtaining degraded results on the private leaderboard (this
actually happened to the top four winners on the public
leaderboard, the fourth, ekffar, falling to fifth rank in the private
leaderboard).

In this competition, the organizer also provides three attributes
of the user-song interaction context, as well as attributes of each
song and user. The use of public data was encouraged by the
organizers; however, we did not find public datasets we could
efficiently use within the challenge time-period.
There is no explicit timestamp information for the first listening
event of a user-song pair. However, the order of examples in the
training and test datasets itself is time-ordered (apparently, the
Kaggle organizers did not shuffle the datasets). Using this time-
ordered information and new registration information, we could
approximately extract the timestamp of the first listening event of
a user-song pair. However, the organizers said they removed the
timestamp feature to avoid leakage. Therefore, we did not use
anywhere this timestamp information in our approach.

Feature engineering is a critical step in the data science
process, which comes right before the modeling stage. It is one of
the most important and time-consuming tasks in predictive
analytics projects. Its purpose is to design, from the raw data,
features that will make the model easier and faster to train, and
increase its performances. In practice, almost all the winners in
recent Kaggle competitions have extensively used feature
engineering, and put a lot of time and energy in designing these
features. For example, in an extreme case, winners in the Grupo
Bimbo Inventory Prediction1 reported that they spent 95% of their
time on feature engineering and only 5% on modeling (details can
be found in the challenge blog 2). In the Outbrain Click
Prediction3 kaggle challenge, it was possible to get 19th position
by the help of feature engineering [2]. Feature engineering
involves deep data exploration to understand their specificities, as

1 https://www.kaggle.com/ben519/grupo-bimbo-inventory-demand/visualize-
predictions
2 http://blog.kaggle.com/2016/09/27/grupo-bimbo-inventory-demand-winners-
interviewclustifier-alex-andrey/
3 https://www.kaggle.com/c/outbrain-click-prediction

well as domain knowledge to create meaningful and helpful
features. Until now, feature engineering is still more art than
science. However, some authors [3], [4] have proposed methods
to automate the process of feature engineering, which would
certainly be a huge advantage for Kaggle challenges, and more
generally, to any predictive analytics project. Our approach for the
WSDM Cup aligns with these objectives: we tried to generate as
automatically as possible a large number of features. Careful
evaluation of generated features allowed us to progressively
increase performances. We used very simple vanilla models.

So feature engineering is a really time-consuming part of data
mining, requiring strong data mining and statistics backgrounds as
well as domain knowledge, but can improve performances
significantly. Automatic feature engineering will certainly happen
in the future.

This paper describes the approach of the team EdZhang in the
WSDM Cup in section 2 and the results obtained in section 3. The
team obtained rank 6 in the challenge.

2 APPROACH

2.1 Dataset description
In this music recommendation competition, there are five csv

files. The structure of the dataset is really simple and is shown in
Figure 1. The train.csv and test.csv contain user ID, songs ID and
three context attributes. The other three csv files include
attributes of each song and user. We can merge all these attributes
into train.csv and test.csv to generate a union table.

Figure 1: Structure of the dataset in KKBOX’s Music
Recommendation Challenge. Light gray square indicates csv
table in the dataset, white square indicates one attribute in the
csv table and the link between two tables indicates that two
tables can be merged by that attribute.

The number of features in each csv file is also very small.
Table 1 shows the details of the count of features in each csv file,
where user ID and song ID are included in train.csv and test.csv.

Table 1: Description of csv file in the dataset

Name of file Count of Features
train.csv 6
test.csv
songs.csv
members.csv
song_extra_info.csv

5
6
6
2

In the following sections, we will use the following notations,

described in Table 2.

Table 2: Notations

Notation Description
m, n Number of users, songs
𝑀" Co-occurrence matrix of user and 𝑒, where

𝑒 can be 𝑒𝑛𝑡𝑖𝑡𝑦 song, or artist
𝑀(,*
" The value in ith row and jth column of

matrix 𝑀", e.g. number of times user i
listened to song j

𝑀(,+
" The ith row of matrix 𝑀".

𝑀+,*
" The jth column of matrix 𝑀".

F(𝑀") A function applied on matrix 𝑀".
L The size of latent space of SVD.
𝑁- Neighborhood of user	𝑎.

𝐹1-2"_4"-567"

A new feature or a new groups of features

2.2 Exploration
Data exploration is the first step in a data mining project and

heavily depends on the dataset. It is important to give an idea of
how to deal with the task. In Figure 1, we can see that the
structure of our dataset is not very complex. Therefore, we
merged all the tables into one union table before doing the data
exploration described below.

2.2.1 Count of values in each feature
Because most of the features in the dataset are categorical

features, we calculate the number of different values of each
categorical feature as shown in Table 3. The counts of user, song,
artist_name, composer, lyricist are very large, so one-hot
encoding will not be a suitable preprocessing method because of
the curse of dimensionality and the cost of memory and
computation. In this situation, choosing other encoding methods
or finding some representations of these features will help the
model.

2.2.2 Missing values
Understanding and handling missing values can also heavily

influence the performance of a predictive model. We make a brief
summary of the observed missing value rates in Table 3.
Composer, lyricist and gender have high missing value rates

compared with the other features. Because in this challenge,
competitors could use external data, these features would be good
candidates to search external data. Although we did not use any
external data because of lack of time, it would be useful to enrich,
through external data, the features with high missing value rates.
Furthermore, the difference of missing value rates among
different features also leads us to generate more features for
artist_name than for composer and lyricist.

Table 3: Count of values and missing value rate of different
features

Name Type Count of
values

Missing value
rate (%)

msno categorical 34,403 0
song_id
source_system_tab
source_screen_name
source_type
song_length
genre_ids
artist_name
composer
lyricist
language
city
bd (age)
gender
registered_via
registration_init_time
expiration_date
song name
isrc

categorical
categorical
categorical
categorical

numeric
categorical
categorical
categorical
categorical
categorical
categorical

numeric
categorical
categorical
timestamp
timestamp

text
categorical

419,839
9

22
12
-

608
46,372
86,438
37,876

10
21
-
2
6
-
-
-

315,966

0
0.236
5.815
0.290
0.001
1.616
0.001

23.102
44.327
0.002

0
0

40.403
0
0
0

0.023
7.796

2.2.3 Training and test sets
We also want to see the difference between training and test

sets, because most data mining algorithms have a basic
assumption that the training and test sets must have the same
distribution (identically distributed). There are 7,377,418
examples in the training set and 2,556,790 examples in the test set,
which is a ratio of almost 2.88 to 1. For the target in the training
set, the ratio of the number of positive examples to the number of
negative examples is about 1, so we have a balanced binary
classification task. We check the distributions of the training and
test sets on the various attributes. For example, we compare the
count of each value in the context features (source_screen_name,
source_system_tab, source_type) between training and test sets.
In Figure 2, we can see that the distributions of the training and
test sets are really different; for example, the difference between
the percentage of the value “my library” of source_system_tab in
the training set is 10% larger than in the test set. This situation
also occurs for the other context features source_sceen_name and
source_type. Because of such large differences, it is in theory not
allowed to apply on test set a model trained on the training set.
This is why we did feature engineering on the training and test

sets together, as will be shown later, which is certainly not a good
choice in the normal i.d. situation.

There are 35,996 different songs in the training set, 224,753 in
the test set and 59,873 different songs only exist in the test set.
This means that the test set has 26.64% of new songs, usually
called cold-start. These songs are present in 12.52% of the test
examples. This is a big challenge in this task. The cold-start
problem also exists for users. There are 30,755 different users in
the training set and 25,131 different users in the test set where
3,648 only exist in the test set (14.52% cold-start users, appearing
in 7.20% of test examples), which is shown in Figure 3. The cold-
start problem in this task is so significant that we need to put even
more care on getting a robust model to avoid overfitting.

Moreover, some user-song pairs exist in both training and test
sets. Because if a user listens the same song after a long time (e.g.
two months), the system will count that user-song pair again. In
total, the count of this kind of user-song pairs is 320,446, which is
12.53% of the test set. These user-song pairs are the same in the
training and test sets in the attributes level, but their meaning in
training and test are totally different because there is a hidden
time-order between training and test sets. This kind of situation
also challenges us to make a robust model so as to avoid
overfitting.

Figure 2: Count of each value in source_system_table in the
training (blue) and test (orange) sets. X axis shows different
values in source_system_tab, Y axis shows the percentage of
examples in training / test sets having this value.

Figure 3: Structure of training and test sets. The light grey
indicates the training set and the white part indicates the test
set. “user-song duplicate” indicates the user-song pairs that
exist both in the training set and test set. “user cold start” and
“song cold start” indicate the user or song that never occur in
the training set.

2.3 Feature engineering
2.3.1 Attributes of song

There are two csv files related with the raw features of song
(song.csv and song_extra_info.csv). We extract several features
from song_extra_info.csv.

Language from song name: we use the langid package
https://pypi.python.org/pypi/langid to detect the language
associated to the song name and, for each song 𝑠, derive feature :

𝐹9-1:6-:"_;<1: 𝑠 (1)

Year and country of song from ISRC: from Wikipedia, we
know that the first two characters of The International Standard
Recording Code (ISRC) is a two-character country code and the
last two characters of ISRC represent the last two digits of the
reference year. We extract the year of song and the country code
of song from ISRC, for each song 𝑠:

𝐹="-7_;<1: 𝑠 𝐹><6157?_;<1: 𝑠 (2)

Statistic features of genre, artist, composer, lyricist: Because
some songs could contain more than one genre, artist, composer
and lyricist. We calculate the count of genre, artist, composer and
lyricist in each song. In some songs, the Artist, composer and
lyricist could be same. We generate two features that indicates if
the artist and composer in a song are the same one, if the artist,
composer and lyricist in a song are the same one.

𝐹:"17"@AB 𝑠 , 𝐹-75(C5@AB 𝑠 ,

	𝐹D<2E<C"7_F"1 𝑠

𝐹F?7(D(C5_F"1 𝑠

 𝐹-75(C5_D<2E<C"7_C-2" 𝑠

𝐹-75(C5_D<2E<C"7_F?7(D(C5_C-2" 𝑠

(3)

2.3.2 Attributes of user
Age of users: in data exploration, we can see outliers in the age

attribute, including small age (age=0), negative age (age<0) and
large age (age >130). In this approach, we set to 0 all ages less
than or equal to 0, and set to 76 all ages larger than 75. For each
user 𝑎 we define feature:

𝐹G:"_HC"7 𝑎 (4)

Registration and expiration date of users: from the description
of the competition, we know that the time block of the dataset is
before the time block of KKBOX’s Churn Prediction Challenge [7]
where the log history goes from 2015-01-01 to 2017-03-31. We
thus generate two features computing how many days there are
between registration date and 2017-03-31, and between expiration
date and 2017-03-31. In addition, we generate the year, month of
year and day of month for the registration and expiration dates.
For each user 𝑎 we define features: Registration and expiration
date (user)

𝐹I":(C57-5(<1_HC"7 𝑎 , 𝐹I":(C57-5(<1_HC"7_= 𝑎 ,
𝐹I":(C57-5(<1_HC"7_J= 𝑎 , 𝐹I":(C57-5(<1_HC"7_KJ 𝑎 ,		

(5)

𝐹LME(7-5(<1_HC"7 𝑎 , 𝐹LME(7-5(<1_HC"7_= 𝑎 ,
𝐹LME(7-5(<1_HC"7_J= 𝑎 ,	𝐹LME(7-5(<1_HC"7_KJ 𝑎

Age gap between user and song: this feature represents the gap
between the age of users and the year of a song:

𝐹G:"N-E_HC"7;<1: 𝑎, 𝑠 (6)

In real life, young people usually prefer newer songs, while
older are more likely to listen to older songs.

Count of songs each user listened: this feature indicates how
many different songs each user listened.

𝐹><615_HC"7;<1: 𝑎, 𝑠 (7)

2.3.3 Representation features
Because of the strong interaction between user and song, we

should certainly derive interaction-based features. However, since
the dimension of user and song is large, we cannot encode the
behavior of user or song by One-Hot encoding. This requires us to
find adequate representations for user, song and user-song pairs.
In the recommendation area, neighborhood based Top-N
collaborative filtering (CF) and model based matrix factorization
(MF) are two strong and powerful families (see [1]) which we
could use to generate features. The item-based CF will compute
the Top-N most similar items for each item based on some
similarity measure (e.g. cosine similarity, Jaccard similarity, etc.)
as the neighbors of that item. Then it will compute a score of each
user-item pair based on what the user had purchased and
neighbors of the item. Similarly, the user-based CF will construct
the Top-N most similar users for each user as the neighbors of that
user. On the other hand, matrix factorization method projects both
user and item into a latent space of low dimension. In that space, a
user will be close to the items that he had purchased. The most
efficient MF method is the Singular Value Decomposition (SVD)
([5]).

SVD representation of user and songs. To do SVD matrix
factorization we used sparsesvd (a Python package4), which is a
wrapper around the SVDLIBC 5 library by Doug Rohde. The
sparsesvd package can handle SciPy’s sparse Compressed Sparse
Column (CSC) matrix format, so it is memory-efficient.

M ≈ U. 𝑉T (8)

Where 𝑀 is an 𝑚×𝑛 input matrix, U an 𝑚×𝑘 matrix, V an 𝑛×𝑘
matrix, k is the dimension of the SVD latent space.

For the input part, we use all the user-song interactions in the
train set and test except the duplicate interactions to construct the
user-song matrix 𝑀 = 𝑀𝑠𝑜𝑛𝑔. As discussed in section 2.2.2, the
distributions of training and test sets are very different. To
mitigate this effect, we chose to do feature engineering on the
combination of both training and test sets. This means that in the
user-song matrix 𝑀𝑠𝑜𝑛𝑔, 0 shows that the user did not listen to the
song, 1 indicates that he did at least once. Because we introduce

4 https://pypi.python.org/pypi/sparsesvd/
5 http://tedlab.mit.edu/~dr/SVDLIBC/

some leakage from the test set into the training data, we need to be
extra careful about robustness and overfitting. We will see how
below.

The dimension k of the SVD latent space is a hyper-parameter
we evaluated by cross-validation: in our final results, we choose k
= 30. Using the latent space representations computed in equation
(1), we generate one 30-dimension user representation and one
30-dimension song representation. We also compute the dot
product of these two representations as a representation of the
user-song pair.

Moreover, we multiply each dimension of user representation
and song representation to generate another 30-dimension user-
song pairs representation. These features can indicate how similar
of user and song in each dimension of the latent space.
So we generate totally 30+30+30+1=91 new features here:

𝐹;[K_HC"7;<1: 𝑎, 𝑠 = 𝑎, 𝑠, 𝑎. 𝑠, 𝑎×	𝑠 (9)

Where 𝑎 = 𝑈-+, 𝑠 = 𝑉C+, 𝑎. 𝑠 is the dot product of projections 𝑎
and 𝑠, and 𝑎×	𝑠 = 𝑎]×𝑠], … , 𝑎_`×𝑠_`	 .

CF score of each user-song pairs: Top-N CF is another main
family of recommendation methods system. We use user-based
CF rather than item-based CF, because there are less users than
songs in the dataset as shown in Table 3. We compute cosine
similarity between all different user pairs based on user-song
matrix 𝑀C<1:_(a:

𝑐𝑜𝑠𝑖𝑛𝑒 𝑎, 𝑏 = 	
𝛼 ∙ 𝛽

||𝛼|| ∙ ||𝛽||
 (10)

Where 𝛼 and 𝛽 are the two vectors of users 𝑎 and 𝑏 in matrix
𝑀C<1:_(a , 	𝛼 = 𝑀-,+

C<1:_(a , 	𝛽 = 𝑀h,+
C<1:_(a . As before, we use all

the user-song interactions in the training and test sets except the
duplicate interactions to construct user-song matrix 𝑀C<1:_(a.

For each user 𝑎, we select as neighborhood 𝑁- of 𝑎 the top 100
users with highest cosine similarity with user 𝑎. For each user-
song pair 𝑎, 𝑠 , we then generate the Top-N CF score as :

𝐹T<E+i_>j_CD<7" 𝑎, 𝑠 = 	
1
𝑚-

𝑀6,l
C<1m_no	.		𝑐𝑜𝑠𝑖𝑛𝑒(𝑎, 𝑢)

6	∈it

 (11)

Where 𝑚- is the number of users in 𝑁-.
SVD representation of user-artist pairs: It is similar to the

SVD representation on user-song pairs. The difference between
user-song pair and user-artist pair representations is that for each
song there might be more than one artist.
1. We Split the artist attributes by separators (, | \\ & \ / + ; ，

and feat. Features featuring with X) (different separators are
separated by space). One song can have more than one artist,
which are separated mostly by these separators. That is the
reason we choose these separators here.

2. We compute a user-artist matrix 𝑀-75(C5 where 𝑀-*
-75(C5

indicates the number of songs that contain artist 𝑗 which user
𝑎 has listened to. We also eliminate all the duplicate user-
song pairs before this process.

3. We decompose matrix 𝑀-75(C5 by SVD (with latent space
dimension equal to 180: we choose this size by testing the
Pearson Correlation Coefficient between the feature and
target values). Finally, we use dot product of user and artist
representations to generate a 1-dimension score of user-artist
pairs. Because one song will contain more than one artist, we
use the maximum values of user-artist pairs for each user-
song pair, when we use this user-artist feature.

Through this process, we generate one new feature:

𝐹;[K_HC"7G75(C5 𝑎, 𝑠 = max
:∈C

𝑎. 𝚥 (12)

Similarity score between user and song attributes (genre,
artist_name, lyricist, composer, language): we want to know how
similar are songs a user listened to and song he is listening to now.
The following is the workflow of this process. Let us take
artist_name for example. We count how many times a user
listened songs by that artist. In other words, we generate a count
of word vector for each user, where each word indicates one artist.
Combining all these count of word vectors, we get a user-artist
matrix 𝑀-,+

-75(C5 for user 𝑎.
Let 𝑎, 𝑠 indicate a user-song pair, we denote 𝐴C-75(C5 as the

one-hot encoding vector of feature artist of song s. For each user-
song pair 𝑎, 𝑠 , we generate similarity features S as follows:

𝐹(2_HC"7;<1:_-75(C5 𝑎, 𝑠 	

= 	
𝑀-,+
-75(C5 − 𝐴C-75(C5

	 𝑀-*
-75(C5 − 𝐴-*-75(C5* 	 ∙ 	(𝐴C*-75(C5/ 𝐴C*-75(C5~)T

 (13)	

Actually, this similarity measures how similar a particular

user’s transaction is with all his other transactions. All the other
similarity features between user and the attributes of song are
generated in the same way. We generate 5 features in this process
with x=(genre, artist_name, lyricist, composer, language):

𝐹C(2_HC"7;<1:_M		 (14)	

Similarity score between user and context attributes: the
method to generate this group of features is the same as the
previous one. The only difference is that in this part we measure
the similarity of the context information inside each user.
We generate 3 features here, with x=(source_system_tab,
source_screen_name, source_type):

𝐹C(2_HC"7><15"M5_M		 (15)	

User representation of context information: from Figure 2, we
found that context information is important in this challenge. This
gives us the idea of generating more features for these context
features. Take source_system_tab for example here, we will
generate user-source_system_tab co-occurence matrix
𝑀C<67D"_C?C5"2_5-h in the same way we generated 𝑀-75(C5		in the
SVD representation of user-artist. Then we normalize
𝑀-,+
C<67D"_C?C5"2_5-h by 𝑀-,+

C<67D"_C?C5"2_5-h.
We thus get a user-source_system_tab feature for each user 𝑎:

𝐹HC"7><15"M5__C<67D"_C?C5"2_5-h	 𝑎 	

= 	
𝑀-,+
C<67D"_C?C5"2_5-h

𝑀-,*
C<67D"_C?C5"2_5-h

*
 (16)

We generate representation features for the other context
features in the same way. Totally, we generate 46 features here:

𝐹HC"7><15"M5_M 𝑎 (17)

with x = (source_system_tab, source_screen_name, source_type).
We thus have defined a total of 167 features, shown in Table 4,
out of which 91 come from the SVD representation of (user, song)
pairs:

Table 4: Description of features generated by feature
engineering

Name Notation N°
Language (song) 𝐹9-1:6-:"_;<1: 1
Year and country
(song)from ISRC 𝐹="-7_;<1:		𝐹><6157?_;<1: 2

Statistic features
of genre, artist,

composer, lyricist

𝐹:"17"_F"1		𝐹-75(C5_F"1 𝐹D<2E<C"7_F"1

𝐹F?7(D(C5_F"1 𝐹-75(C5_D<2E<C"7_C-2"

𝐹-75(C5_D<2E<C"7_F?7(D(C5_C-2"

6

Age (user) 𝐹G:"_HC"7 1

Registration and
expiration date

(user)

𝐹I":(C57-5(<1_HC"7 𝐹I":(C57-5(<1_HC"7_=
𝐹I":(C57-5(<1_HC"7_J=

𝐹I":(C57-5(<1_HC"7_KJ		𝐹LME(7-5(<1_HC"7
𝐹LME(7-5(<1_HC"7_=

𝐹LME(7-5(<1_HC"7_J=		𝐹LME(7-5(<1_HC"7_KJ

8

Age gap between
(user-song) 𝐹G:"N-E_HC"7;<1: 1

Count of songs
user listened
(user-song)

𝐹><615_HC"7;<1: 1

SVD rep. (user-
song) 𝐹;[K_HC"7;<1: 91

CF score (user-
song)

𝐹T<E+i_>j_CD<7" 1

SVD rep. (user-
artist) 𝐹;[K_HC"7G75(C5 1

Similarity score
(user, song
attributes)

𝐹C(2_HC"7;<1:_M 5

Similarity score
(user, context

attributes)
𝐹C(2_HC"7><15"M5_M 3

User rep. (user,
context) 𝐹HC"7><15"M5_M 46

2.4 Model Training
We obtained our final results through an ensemble of two

gradient boosting tree models from LightGBM 6 package with
different parameters.

The only preprocessing applied to the features described in the
previous section was filling missing values and using Label-
Encoder (sklearn) to map string variables to numeric ones. We fill
missing value for categorical features by a new category we call
“others” and for numeric features by “-1”. Since missing values
are rarely MAR (missing at random), it is preferable to avoid
filling in missing values by mean, median or most frequent
categorical variable. This is even more so because we are using
tree-based method. One-hot encoding for categorical features and
normalization for the numeric features do not help improving tree-
based method. Moreover, one-hot encoding costs much more
memory and computation time. The idea of filling in missing
values by “others” or “-1” is that tree-based methods can handle
different variables in one feature very well. In this section, we will
introduce how we build our two models and how we blend them
into one unique model to get better results. When we did this
challenge, the version of sklearn was 0.19.1, the version of
LightGBM 2.0.10 and the version of langid 1.1.6.

2.4.1 LightGBM model 1
Training set and Validation set. As shown in paragraph 2.3.2,

there are 320,446 user-song pairs (12.53% of test set), which exist
both in training and test sets but with different meanings. For
these user-song pairs, target 1 in the training set means the user
listened to that song again within one month after the user’s very
first observable listening event. However, target 0 in the training
set means the user listened to that song again but not within one
month. Therefore, when we train the model, we always eliminate
from the training set the duplicate user-song pairs with target
variable 0. We thus eliminate 173,931 training examples after this
step.

Validation set helps us evaluating the performances of our
model offline, tuning parameters and avoiding overfitting on
public leaderboard. It is very important to use a suitable validation
set here to avoid overfitting by being exposed too often to the
public leaderboard.

Features used. All the features generated in section 2.3 are
used in our models. All the other user raw features (msno, city,
gender, registered_via), song raw features (song_id, song_length,
genre_ids, artist_name, composer, lyricist, language) and context
raw features (source_system_tab, source_system_name,
source_system_type) are used in our models too.

Hyper-parameters. Table 5 shows the hyper-parameters used
in our LightGBM model 1 (first column). For the other hyper-
parameters not listed here, we simply use default values.

Training. In our approach, we used 10-fold cross-validation
(sklearn). Through stratified sampling, we draw from the training
set 10 samples (folds) with 90% is used for training and 10% for

6 http://lightgbm.readthedocs.io/en/latest/index.html

validation. Each fold has almost equal numbers of positive and
negative examples. Then, we train one LightGBM model on the
training part of the cross-validation fold, and evaluate it on the
validation part.

Table 5: Values of hyper-parameters of LightGBM models

Parameter LightGBM Model
1

LightGBM Model
2

learning_rate 0.05 0.1
max_depth 15 15
num_leaves 2� 2�
application binary binary
colsample_bytree 0.7 0.9
subsample 0.7 0.9

a) num_boost_round 3100 3100
early_stopping_rounds 10 10

Blending of 10-fold cross-validation. We have obtained 10

different models with different training and validation sets in our
10 cross-validations samples. We blend these 10 models by
simply taking an average of the prediction scores of the obtained
10 models. We give an equal weight to all these 10 models in this
blending step.

One should note that, in this fashion, we can evaluate the
significance of features without submitting our results on the
public leaderboard.

2.4.2 LightGBM model 2
Training set and Validation set. The methods of preprocessing

and splitting training and validation sets are the same as for our
LightGBM model 1. The only difference here is that we use
different parameters of LightGBM algorithm.

Feature used. It is the same as §2.4.1, all the features
generated in session 2.3 and user raw features, song raw features,
context raw features are used here.

Hyper-parameters. Table 5 (right column) shows the hyper-
parameters used in our LightGBM model 2. For the other hyper-
parameters not listed here, we simply use default values.

Training and blending. As for LightGBM model 1.

2.4.3 Ensemble model of LightGBM model 1 and LightGBM
model 2

After LightGBM model 1 and Light GBM model 2 with their
different hyper-parameters have been trained and blended, we
make an ensemble of these two models together by simply taking
the average of the prediction scores of model 1 and model 2. This
generates a stronger model.

With more time, more sophisticated methods could certainly
be used for getting better ensembles.

3 EVALUATION RESULTS
For our final result with an ensemble of two LightGBM

models, we got an AUC score 0.72930 on the public leaderboard
and increased the AUC score to 0.73015 on the private
leaderboard, getting us 6th position. This means we did not overfit

the public leaderboard. To achieve this, we mainly used three
tactics:
4. Early stopping: as shown in Table 5, we trained our models

in a few iterations. As usual, this regularization technique
helps getting robust models.

5. Use private validation set. As discussed in sections 2.4.1 and
2.4.2, we validated our models on our private validation set
(in each cross-validation fold). We submitted our models to
the public leaderboard parsimoniously to avoid learning it
too much.

6. Progressive increase of feature sets. We used a staged
approach to incorporate features. When features did not bring
performance increase on our validation set, we dropped them.

In this section, we will now compare the performances of the
models presented in section 3 and show the effect of blending and
ensemble.

In Table 6, we show the public and private leaderboards AUC
scores of our two LightGBM models (1 and 2), blended with 10
cross-validation folds and without blending. Of course, time
consumption of a single model is much smaller than the cost for
the ensemble (around 1/10 time cost of the final model, we show
the time cost of each model in Table 6 too), while performance is
degraded but still relatively good.

In Table 6, the AUC performance of the best single model
(LightGBM model 1 without 10-fold cross-validation) is 0.72787,
which is not far from the performance of the final ensemble model
(0.73015). The performances of the blended LightGBM model 1
and LightGBM 2 (with 10-fold cross validation) on private
leaderboard are 0.72930 and 0.72893.

Table 6: AUC Score and Time Cost of Different Models

Name Public
LB

Private
LB

Time
(min)

LightGBM model 1 without
10-fold cross-validation

0.72684 0.72787 60

LightGBM model 2 without
10-fold cross-validation

0.72268 0.72350 62

LightGBM model 1 (blend) 0.72892 0.72930 603
LightGBM model 2 (blend) 0.72797 0.72893 622
Ensemble of models 1 and 2 0.72930 0.73015 1225

The interesting part is not only the final private and public
leaderboard scores themselves, but the step-by-step process of
how this score is progressively increased. In our approach, we
find that as we add more and more suitable features, the
performance will increase step-by-step. Some features can even
give us a really large improvement. We show three main big
improvements of our approach in Figure 4: the blue line shows the
increasing AUC score in public leaderboard. There are mainly
three big jumps in this process marked by A, B, C. In jump A, we
mainly add SVD representations of user and songs features and
tune the hyper-parameter of SVD representation. In jump B, we
mainly blend the results of 10-fold cross-validation. In jump C,
we mainly add similarity score features, CF features and SVD

user-artist representation features. As we add more and more
suitable features, the AUC performance increases step-by-step.
Not all features helped. We tried time-based features, which did
not work well, maybe because the precise timestamp was not
provided. As we said, we evaluated features and only submitted
our model with them to public leaderboard when they
significantly improved performances on our private validation.
Otherwise, we just dropped them from our candidate list.

Figure 4 : Public LB AUC score along time

Figure 5: Feature importance

We also want to compare the importance between different
group of features that we used in our final LightGBM model. In
the Figure 5, we show the maximum Feature importance score
(gain) in each feature group. All these feature groups are used in
our final LightGBM model. They were introduced in Table 4 and
§2.4.1. The context features are the most important features in this
task. SVD representation features also have a very high
importance score. That is the most important group of features in
this feature engineering process.

As the description of our approach shows, we spent most of
our efforts on feature engineering, and used plain, simple, out-of-
the-box models (LightGBM) or ensemble techniques (average).
Obviously, better models might have obtained better results.
However, it is our strong belief that, in a limited timeframe,
efforts are better spent on feature engineering than on
sophisticated models.

4 CONCLUSION
Feature engineering is a really important and irreplaceable

ingredient in a predictive analytics project. Especially when the
size of dataset is not very large, feature engineering is extremely
helpful to improve performances in most cases. Some features
from feature engineering did not help or even hurt the
performance of the model. However, with our process of
progressive validation, we just dropped them. Obviously, when
datasets are large, time costs may become an issue, since in our
approach, we generate features to then evaluate and possibly
retain them. The balance of costs versus performance increase has
to be carefully evaluated in such cases.

Because of different distributions between training and test sets,
we used features computed on both training and test sets, thus
actually leaking information from the future into our model (a
practice certainly not recommended in general). This obviously
might hurt performances on test set. For example, if we generate a
feature for counting the number of users listening to each song,
the performance will increase in validation set but decrease in test
set. The reason is that the distributions of this feature between
validation and test sets are significantly different. However, we
had to mitigate the impact of the differing distributions taking that
leakage risk when handling the feature engineering process. To
limit this risk, we need to take extra care to avoid overfitting.

What is left to do for challenges such as this one includes
generating more time-dependent features to get better
performances and certainly using neural network-based methods
for their capacity to generate features, but we did not have time to
complete our work on neural networks in this challenge.

In our future work, we will try to make the feature engineering
process more and more automatic and apply this automatic feature
engineering process to other challenges.

ACKNOWLEDGMENTS
We want to thank WSDM, KKBOX and Kaggle for holding

this recommendation challenge, which allowed us to apply our
ideas in practice and learn a lot throughout this process.

REFERENCES
[1] Daniel Bernardes, Mamadou Diaby, Raphaël Fournier, Françoise Fogelman

Soulié, Emmanuel Viennet. 2014. A Social Formalism & Survey for
Recommender Systems. SIG KDD Explorations, Vol. 16, Issue 2, pp. 20-37,
December 2014.

[2] Gabriel Moreira. 2017. How feature engineering can help you do well in a
Kaggle competition. KDNuggets News, Vol. 17, n°23, 25, 27. June and July
2017. https://www.kdnuggets.com/2017/06/feature-engineering-help-kaggle-
competition-1.html

[3] James Max Kanter, Kalyan Veeramachaneni. 2015. Deep feature synthesis:
Towards automating data science endeavors. IEEE International Conference
on Data Science and Advanced Analytics, DSAA, Paris 19-21 Oct. 2015.

[4] Gilad Katz, Eui Chul Richard Shin, Dawn Song, 2016. ExploreKit: Automatic
Feature Generation and Selection, IEEE 16th International Conference on Data
Mining ICDM, 979-984.

[5] Yehuda Koren, Robert Bell. 2011.Advances in Collaborative Filtering.
Recommender Systems Handbook, Francesco Ricci, Lior Rokach, Bracha
Shapira, Paul B. Kantor editors, Chapter 5. Springer Science and Business
Media, LLC, p. 145-186.

[6] WSDM 2018 Cup - KKBOX's Music Recommendation Challenge. 2018.
https://www.kaggle.com/c/KKBOX-music-recommendation-challenge,
https://wsdm-cup-2018.KKBOX.events/

[7] WSDM 2018 Cup – KKBOX's Churn Prediction Challenge. 2018.
https://www.kaggle.com/c/KKBOX-churn-prediction-challenge

