
Truncated SVD-based Feature Engineering for Music
Recommendation

KKBOX’s Music Recommendation challenge at ACMWSDM Cup 2018

Nima Shahbazi
York University

nima@cse.yorku.ca

Mohamed Chahhou
Sidi Mohamed Ben Abdellah

University
mchahhou@hotmail.com

Jarek Gryz
York University

jarek@cse.yorku.ca

ABSTRACT
This year’s ACM WSDM Cup asked the ML community to build an
improved music recommendation system using a dataset provided
by KKBOX. The task was to predict the chances a user would listen
to a song repetitively after the first observable listening event within
a given time frame. We cast this problem as a binary classification
problem and addressed it by using gradient boosted decision trees.
To overcome the cold start problem, which is a notorious problem in
recommender systems, we create truncated SVD-based embedding
features for users, songs and artists. Using the embedding features
with four different statistical based features (users, songs, artists
and time), our model won the ACM challenge, ranking second.
There was no music domain knowledge needed for creating the
features, and we only relied on the information gain and prediction
accuracy for feature selection.

CCS CONCEPTS
• Information systems→ Recommender systems;

KEYWORDS
Truncated SVD, Cold start, Gradient boosting

1 INTRODUCTION
Until recently, people listened to their own local music library and
rarely curated collections online. But the era of local music libraries
is over. Personalization algorithms and unlimited streaming ser-
vices like YouTube, Spotify, etc. are emerging. People now listen
to all kinds of music and algorithms still struggle in some key ar-
eas. Without enough historical data, how can an algorithm predict
whether a listener will like a new song or a new artist? And how
can it recommend songs to brand new users?

The popularity of online content services and social media has
demonstrated the value of providing relevant information to users.
Recommender systems have proven to be an effective tool for this
purpose and are receiving increasingly more attention. Also, re-
cently the amount of available training data has increased enor-
mously and advances in hardware (like GPUs) have made it possible
to tackle these problems in a reasonable amount of time.

One common approach for building an accurate recommender
model is collaborate filtering (CF). CF, used widely across various
domains [9], exploits the overall behavior or taste of other users

to suggest relevant preference to a specific user. Many web ser-
vices such as Netflix, Spotify, YouTube, KKBOX1 use CF to deliver
personalized recommendation to their customers.

The ACMWSDMCup challenged the ML community to improve
KKBOX model and build a better music recommendation system
using their dataset2. KKBOX currently uses CF based algorithm
with matrix factorization but expects that other techniques could
lead to better music recommendations.

In this task, we want to predict songs which a user will truly like.
Intuitively, if a user much enjoys a song, s/he will repetitively listen
to it. We are asked to predict the chances of a user listening to a song
repetitively after the first observable listening event within a given
time window. If there are recurring listening event(s) triggered
within a month after the user’s very first observable listening event,
its target is marked 1, and 0 otherwise. More formally, let’s assume
an event E(U , S,T1) in which a user U listened to a song S and it
occurred at time T1. If we observe a subsequent event E ′(U , S,T2)
whereT 2−T 1 < 1 month (that is, we got repetitive listening within
one month), event E will be marked as 1 otherwise it will be marked
as 0. The submissions are evaluated on area under the ROC curve
between the predicted probability and the observed target.

For this competition, KKBOX has provided a training data set
that consists of information of the first observable listening event
for each unique user-song pair (E) within a specific timeframe. The
training and the test data are selected from users’ listening history
in a given time period and have around 7 and 2.5 millions unique
user-song pairs respectively. Although the training and the test sets
are split based on time and ordered chronologically, the timestamps
for train and test are not provided. It is worth mentioning that this
structure also suffers from the cold start problem: 14.5% of the
users and 26.6% of the songs in test do not appear in the training
data. Table 1 contains some statistics on users and songs in the
training and test data provided by KKBOX which clearly shows
the existence of the cold start problem. Hence the main task is to
predict whether or not a new listener will like a new song or a
new artist. We used embedded features to overcome this problem
(described in detail in Section 2.1).

1KKBOX is an Asia’s leading music streaming service, holding the world’s most
comprehensive Asia-Pop music library with over 30 million tracks.
2https://www.kaggle.com/c/kkbox-music-recommendation-challenge/data

Table 1: users and songs distribution in train and test set

Train Test

7.377.418 events 2.556.790 events
30.755 unique users 25.131 unique users
359.966 unique songs 224.753 unique songs
9.272 users are in train but not in test 3.648 users are in test but not in train; this corresponds to 14.51% new users
195.086 songs are in train but not in test 59.873 songs are in test but not in train; this corresponds to 26.64% new songs

2 OUR APPROACH
The performance of any supervised learning model relies on two
principal factors: predictive features and effective learning algo-
rithm. The feature engineering approach exploits the domain knowl-
edge to extract features from the training data set that should gen-
eralize well to the unseen data in the test set. The features are
in general implicit information contained in the training data set
which the algorithms are not able to extract by themselves. The
quality and quantity of the features have a direct impact on the
overall quality of the model.

Finding the relevant features requires understanding and subse-
quent analysis of the problem structure. Judging the quality of a new
feature is done by examining the information gain of the feature
first and then comparing the performance of the model before and
after the feature is added. Unfortunately, finding such good features
is not an easy task and is also computationally expensive. Most
of the time, the engineered features lead to only small improve-
ments in the performance of the model; to achieve a noticeable
improvement requires engineering of hundreds of features.

Table 2 summarize all features provided by KKBOX. In this work,
we developed a set of hand-crafted features which can be grouped
into the following classes: session features, user-based statistical fea-
tures, song-based statistical features, artist-based statistical features
and embedding features based on user, song, artist and meta-data
from the dataset. These features combined with our learning algo-
rithm proved to be quite powerful and gave us the second-place
ranking with the score difference of 0.00094 from the first place.

2.1 Feature Engineering
Before turning into feature engineering problem, we would like
to highlight some important aspects of our analysis. We noticed
that statistical features based on the target feature did not work
well enough during the training stage. This is probably due to the
dynamics involved in the data structure and the sampling strategy
made by KKBOX as shown in Figure 1. Figure 1 shows the evolution
of the target mean over time. The plot is set up by aggregating
observations target mean in bins of size 100000. In can be seen from
the figure that the target distribution is significantly decreasing
over time and consequently we should expect a target mean decline
in the test dataset too.

Further analysis of the given features shows a strong correlation
between source_type feature and the target value. In Figure 2, we
plot the distribution of songs count per source_type categories
for the first 1 million observations in the train dataset. We can
observe that local_library and local_playlist categories have
the highest count with a large number of re-listening.

Figure 1: Evolution of repeated listening (target) in time.

In Figure 3, we plot the same distribution as above but for the
last 1 million observations in the train dataset and we noticed a
huge drop of re-listening in local_library and local_playlist.
Also, the online_playlist counts have increased significantly.
It seems that users behaviors have changed over time by online
users who are more interested in what other users listened to via
the online_playlist. As a result, they are more interested in
discovering new songs rather than re-listening again to what they
already liked. Still, we can see from the figure that listening to what
other people like does not guarantee that they will re-listen to the
song which explains why the target mean drops over time.

2.1.1 Session Features. The provided dataset does not include
any timestamps or user session information. However, since the
data is ordered chronologically, we were able to approximate user
sessions using the following approach:

(1) merge the train and test dataset
(2) groupby users
(3) for each user shift the data by one to the right
(4) take the difference between the original and shifted indices

and call it diff_ind
(5) small diff_ind values3 correspond to observations within

the same session and high values corresponds to the start of
a new session

(6) consequently diff_ind value for the start of a new session
is assigned for the entire session

For example, suppose that userX has {1,2,3,4,20,21,23,26,100,105,111}
indices in the data set. First, we shift the indices to the right by one
{0,1,2,3,4,20,21,23,26,100,105} and then subtract the shifted ones from
the original ones to yield {1,1,1,1,16,1,2,3,74,5,6}. Here, the session
3A value here can be any number and therefore is a hyperparameter in our model

2

Table 2: KKBOX datasets

Train and Test Songs Meta-data Users Meta-data

user_id song_length city
song_id genre_ids age
source_system_tab (tab name) artist_name gender
source_screen_name (layout name) composer registration_method
source_type (entry point) lyricist registration_date
target (train only) language expiration_date

song_name
ISRC: song code

Figure 2: Number of songs per source_type for the first 1
million observations and the corresponding target values

Figure 3: Number of songs per source_type for the last 1mil-
lion observations and the corresponding target values

change appeared at 16 and 74 which were chosen as the big values
from our hyperparameter tuning. So, for this user we have 3 differ-
ent sessions, where the session values are {1,1,1,1,16,16,16,16,74,74,74}.

The following features are created based on a session feature:
• user session value
• number of sessions for each user_id
• user session id: concatenation of user_id and session (call
it user_session_id)

• transition in session: change in session marked with 1; oth-
erwise 0

• min, max, mean, median and std of session values for each
user_id, song_id and artist_name

• number of session changed for each user_id, song_id and
artist_name

• number of song_id and artist_name for each session
• the first index for each user session (call it first_ind(user_id,
session))

• the first index for each song’s session (call it first_ind
(song_id, session))

• the first index for each artist’s session (call it first_ind
(artist_name, session))

• max, mean, median and std of first_ind for each user, song,
and artist.

2.1.2 Song and Artist Features. Figure 4 shows that some songs
are very popular and have been played more frequently than the
others. We also notice a large variance in the target value for a
large number of songs as the number of times a song is played
increases. But the most important fact is that the chances of re-
listening increases with its popularity (number of times it is played).
Hence, we have introduced seven features to capture the popularity
of a song and its artist:

• year of the song which is derived from ISRC feature
• country of the song which is derived from ISRC feature
• total count of each song_id
• cumulative count of each song_id
• number of times a song_id appears in each source_system_
tab category

• cumulative count of each artist_name
• number of times an artist_name appears in each source_
system_tab category

2.1.3 User Features. Users are the main focus in our feature
engineering approach.We created several different kinds of features,

3

Figure 4: Distribution of played songs

most of which are statistical features based on interactions between
a user and a song or an artist. These statistics are computed per
session, as summarized in Table 3.

We also tried to capture the changes of user behavior over time
with the following approach: for each user, we look at how the
number of songs s/he listen to per session changed over time. For
that, we created two linear regression models: the first model is
fitted to the number of songs per user session and the second one is
fitted to the number of artists per user session. Finally, the following
features are extracted from the linear models: the slope of the model,
the first and last predicted values, and the difference between the
first and the last predicted values.

2.1.4 Embedding Features. The embedding features or latent
factors are based on matrix factorization techniques such as "singu-
lar value decomposition" and it represents the key element in our
model.

The singular value decomposition (SVD) of an nxd matrix A ex-
presses the matrix as a the product of the three simple matrices:

A = USVT

where:
(1) U is an nxn orthogonal matrix.
(2) V is an dxd orthogonal matrix.
(3) S is an nxd diagonal matrix with nonnegative entries, and

with the diagonal entries sorted from high to low (as one
goes "northwest" to "southeast").

A set of latent user-based features and a set of song-based fea-
tures can be derived from the user-song interaction matrix using
SVD technique [5, 8].

Since our user-song matrix is huge and sparse (there are 34403
users and 419839 songs) a dimensionality reduction technique called
truncated-SVD is used to approximate the user-song matrix and
decompose the latent factors (or feature embedding) [7].

Truncated-SVD consists in building rank-k approximation Ak
to the rank r matrix A by using the k most significant singular
components, where k < r , that is:

A =
r∑
i=1

σiuiv
T
i ,Ak =

k∑
i=1

σiuiv
T
i = UkSkV

T
k ,A ≈ Ak

where σi is the i-th singular value of A, and ui and vi are the
corresponding singular vectors. The low rank approximation re-
veals hidden links between users or songs only latent in the original

data matrix. Also, from a mathematical view, the latent vectors Ak
obtained from the truncated SVD are the best rank-k approximation
in the sense that the Frobenius norm | |A −Ak | |F is minimized [2].
From a practical point of view, truncated SVD is fast and the decom-
position is unique which is a nice property that allows reproducible
results. To create the embedding features based on truncated SVD
we proceed as follows. First, the sparse matrixA is created and then
the k dimensions of the matricesU orV are extracted as embedding
factors.

• feature X represents the row of the matrix.
• concatenation of Y1,Y2,Y3, ... features represent the column
of the matrix.

Each entry of the matrix is equal to 1 if X and Y1 or X and Y2 or X
and Y3,... appear in the data.

By setting theX andY matrices with different features, the latent
factors stored inU and V matrices are extracted as follows:

(1) set X = user_id and Y = sonд_id with k = 35, return both
U and V matrices as embedding features

(2) set X = user_id and Y = artist_name with k = 5, return
bothU and V matrices as embedding features

(3) set X = user_id and Y = source_type with k = 10, return
onlyU as embedding features

(4) set X = sonд_id and Y = source_type with k = 10, return
onlyU as embedding features

(5) set X = user_id and Y = дenre_id with k = 10, return only
V as embedding features

(6) set X = user_id and Y1 = sonд_id,Y2 = artist_name,Y3 =
дenre_id,Y4 = source_type with k = 10, return only U as
embedding features

(7) set X = sonд_id and Y = sonд_id with k = 5, return only U
as embedding features. In this matrix for each user, we took
the last 30 songs s/he listened to (it may be a re-listening
or not). Two songs s1 and s2 have entry equal to 1 if a user
listened to both of them in his last 30 listenings. The idea
behind this matrix creation is to overcome the cold start
problem related to the songs.

Two important issues must be addressed in the use of truncated
SVD above: 1) how to set the value for the parameter k (the number
of embedding factors to consider), and 2) whether to use matrix
U or V for the embedding space of the users, songs or artists. The
optimal k value, or the choice between U or V matrix, is obtained
by repeated trials, taking the value which maximizes the prediction
accuracy, which for this task was the area under the ROC curve.

By using the aforementioned embeddings for users we antici-
pated that the ones who listened to the same songs or artists will
be close to each other in the new embedding space. Also, we an-
ticipated that the songs and artists will also be close to each other
in the new embedding space if they were listened to by the same
users.

2.1.5 Dropped Features. The following features were dropped
for various reasons before fitting the models :

• registration_init_time, expiration_date: These features
represent dates and are not useful in their raw format; they
were used to create the duration feature (expiration_date
- registration_date) in days.

4

Table 3: Features based on users

Feature Notation Feature description

Yr(user_id) User’s registration year
Duration(user_id) Number of days between user’s expiration date and registration date
mean((user_id,sessions),song_id) Mean value of number of songs per user sessions
std((user_id,sessions),song_id) Standard deviation of number of songs per user sessions
sum(user_id,song_length) Sum of songs length for each user
cumcount(user_id) Cumulative count of user’s activity
cumcount(user_id,artist_name) Cumulative count of user-artist interaction
cumcount(user_id,genre_id) Cumulative count of user-genre interaction
n_unique(user_id,genre_id) Number of unique genre categories for each user
n_unique(user_id,source_system_tab) Number of unique system_system_tab categories for each user
n_unique(user_id,artist_name) Number of unique artist counts for each user
n_unique(user_id,language) Number of unique language categories for each user
n_unique((user_id,session),genre_id) Number of unique genre categories for each user’s session
n_unique((user_id,session),artist_name) Number of unique artist names for each user’s session
n_unique((user_id,artist_name),session) Number of unique session values for each user’s artist
n_unique((user_id,artist_name),song_year) Number of unique song years for each user’s artist
n_unique((user_id,artist_name),source_system_tab) Number of unique source_system_tab categories for each user’s artist
n_unique((user_id,artist_name),source_screen_name) Number of unique source_screen_name categories for each user’s artist
n_unique((user_id,artist_name),song_country) Number of unique song countries for each user’s artist
n_unique((user_id,artist_name),genre_id) Number of unique genres for each user’s artist
n_unique((user_id,artist_name),gender) Number of unique genders for each user’s artist
n_unique((user_id,session),song_id) Number of unique songs for each user’s session
n_unique((user_id,source_system_tab),song_id) Number of unique songs for each user’s source_system_tab category
n_unique((user_id,artist_name),song_id) Number of unique songs for each user’s artist
n_unique((user_id,session,artist_name),song_id) Number of unique songs for each artist in a user’s session
merge_count(user_id,session) count number of the occurrence of merged user and session
merge_count(user_id,artist_name) count number of the occurrence of merged user and artist
merge_count(user_id,source_type) count number of the occurrence of merged user and source_type
merge_count(user_id,source_screen_name) count number of the occurrence of merged user and source_screen_name
merge_count(user_id,source_system_tab) count number of the occurrence of merged user and source_system_tab
merge_count(user_id,genre_id) count number of the occurrence of merged user and genre
merge_count(user_id,artist_name,song_year) count number of the occurrence of merged user,artist and song year
merge_count(user_id,artist_name,source_screen_name) count number of the occurrence of merged user,artist and

source_screen_name
merge_count(user_id,artist_name,source_type) count number of the occurrence of merged user,artist and source_type
merge_count(user_id,artist_name,source_system_tab) count number of the occurrence of merged user,artist and

source_system_tab
merge_count(user_id,artist_name,composer) count number of the occurrence of merged user,artist and composer
merge_count(user_id,artist_name,language) count number of the occurrence of merged user,artist and language
merge_count(user_id,artist_name,song_country) count number of the occurrence of merged user,artist and song country
merge_count(user_id,artist_name,session,source_type) count number of the occurrence of merged user,artist,session and

source_type
artist_first_time_seen difference between sessions values of the first and current time a user

listened to an artist
artist_last_time_seen difference between sessions values of the last and current time a user

listened to an artist

• composer, lyricist: These features contain a lot of NULL
values and their usage did not show any improvement. We
also tried to replace missing values in artist_name feature
by the composer values but without much success.

• user_id, song_id and artist_namewere the main features
for all of our feature engineering approach and led to over-
fitting if they were used in their raw format. Instead, we used
their embeddings from truncated SVD approach to tackle
the cold start problem.

5

• song_name: we tried some features extraction and TF-IDF
on the song’s names but it didn’t help.

2.2 Training and Validation
In order to examine the performance of the engineered feature more
quickly, we used a subset of the training data (last 41% observation)
to create our own training and validation sets. From this subset,
the last 877417 observations were used for validation and the rest
for the training set. The created validation and training sets have
the same user and song distribution as it appears in the original
training and test data (in order to have the same unseen users and
songs distribution). Within this schema, every time that we had an
improvement on our local validation set, it was guaranteed that
we will get the same improvement on the original test data. Also,
as we have to examine lots of features, having a small validation
schema for the test set is vital. As a result, we came up with indices
4400000 to 6500000 for training and from 6500001 to 7377417 for
validation.

As we are going to experiment exclusively with tree based al-
gorithms, in our experience this kind of learners do not benefit
much from one-hot encoding of categorical variable. So the only
preprocessing we applied to categorical variables was mapping
them to numerical ones and filling the missing values by constant
numbers only.

The decision to restrict the algorithms to tree based ones was
mainly because of our experience of solving similar classification
recommender problems. We also tried Neural Network classifier
learned embedding (with a score less than the tree-based algo-
rithms). But due to time constrains we dropped the neural network
architecture and focused more on our engineered feature with tree
based algorithms (although we could have used them to reduce the
variance of the predicted results).

Using the complete training set as input, we computed all of the
features described above and fed these results into our classification
model for the test set prediction.

2.2.1 Model Selection and Tunning. For binary classification
tasks, there are various learning algorithm than can be used: logistic-
regression, support vector machines (SVM), neural nets, random
forest, gradient boosting decision trees, etc. In this competition,
we used Microsoft LightGBM implementation of gradient boosting
decision trees as our classifier which was presented as NIPS’17
due to its simplicity and superior accuracy in many real world
applications [6].

We have the total number of 185 features described above. A
subset of those features was used to train five different models with
different hyper parameters. There were 80 features in common
between all models but the rest were different. The average Pearson
correlation of the five-model prediction was around .89, which
gives us a good boost in prediction accuracy by using blending or
stacking, described in the following section.

For model parameters tuning, after several experiments, we
found that the best performance was achieved for the parameters
summarized in Table 4. Parameters used in Table 4 are described in
the Github repository4.

4https://github.com/Microsoft/LightGBM

Table 4: Model parameters

parameter values

learning_rate 0.1 0.1 0.1
bagging_fraction 0.9 0.8 0.8
sub_feature 0.8 0.4 0.4
min_hessian 50 500 1000
max_depth 9 63 16
num_leaves 511 200 250
num_rounds 850 80 900

Amazon EC2 c5.4xlarge-c5.9xlarge instances were used for
validation-training with 16-36 CPUs and 32-72 GiB-RAM respec-
tively. Each validation run took around 20 minutes and the time for
training was around one hour only.

2.2.2 Blending and Stacked Generalization. In general stack-
ing is ensemble of models combined sequentially [10]. Blending is
just averaging the output predictions of each model with different
weights. While both techniques have improved the score in this
competition, we used blending approach due to its simplicity and
slightly better results on our validation set.

Bagging method (averaging predictions from single models with
the same features and the same parameters but with different ran-
dom seeds) was used for three of the models, and two of the models
are just single run.

The final model was the weighted average of the five models’
predictions. To find the best weights for the model blending, we
used an optimization function, which is based on Nelder-Mead,
quasi-Newton and conjugate-gradient algorithms [1, 3, 4].

3 RESULTS
Our model achieved 0.74693 AUC on private leaderboard with the
score difference of 0.00094 from the first place. We should highlight
that our models took at most 6 hours to run and had maximum
number of 185 features.

Table 5 shows the improvement of the AUC score as we replace
the user, song and artist with their corresponding embeddings and
after adding engineered features. Note that each row in this table
adds a new feature to the features introduced in the rows above.
Table 6 shows the average importance gain for different set of
features derived from LightGBM importance function.

Truncated SVD-based embedding features proved to be the most
important and result in an increase of nearly 0.07 in the AUC score
from the raw feature set. The rest of the improvement came from
blending models and bagging.

4 CONCLUSION
We have presented our solution to the 2018 ACM WSDM recom-
mender system competition. Our team,Magic Recommenders placed
second and become one of the winners of the competition challenge.
Wewere able to combine embedding features and statistical features
to come up with a promising AUC score for this task. For future
work, a promising area of research is to further explore the user
and song behavior and interaction. Users typically have specific

6

Table 5: Result on AUC score for different set of features

Features Validation AUC score

Raw features without user_id, song_id, artist_name 0.65510
Raw features and four additional features: Duration(user_id), song_year,
song_country and Yr(user_id)

0.66450

replacing user_id, song_id with their corresponding embedding 0.68871
replacing artist_name with it’s embedding 0.69122
adding the rest of embeddings describe in 2.1.4 0.72145
session, user, song and artist engineered features 0.74257

Table 6: Average importance gain for different set of features in LightGBM

Features Average importance gain

user_id and song_id embedding features 0.17778
artist_name embedding features 0.11949
rest of embedding describe in 2.1.4 0.10149
session engineered features 0.13310
user engineered features 0.19250
song engineered features 0.18310
artist engineered features 0.09254

taste when a new song by an artist is released and this taste can
change over time. Another interesting area for future work is to
explore the matrix factorization by the actual target value and not
the appearance of users and songs or artists.

ACKNOWLEDGMENTS
The authors would like to thank KKBOX for providing the data and
offering a really challenging problem. Also, many thanks to WSDM
and Kaggle for hosting this exciting competition.

REFERENCES
[1] Claude J. P. Belisle. 1992. Convergence Theorems for a Class of Simulated

Annealing Algorithms on âĎİ d. Journal of Applied Probability (1992). https:
//doi.org/10.2307/3214721

[2] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. 1999. Matrices, Vector
Spaces, and Information Retrieval. SIAM Rev. (1999). https://doi.org/10.1137/
S0036144598347035

[3] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A Limited-
Memory Algorithm for Bound Constrained Optimization. SIAM Journal on
Scientific Computing (1995). https://doi.org/10.1.1.15.7343

[4] R. Fletcher and C. M. Reeves. 1964. Function minimization by conjugate gradients.
Comput J. (1964). https://doi.org/10.1093/comjnl/7.2.149

[5] Gene H Golub and Charles F Van Loan. 1996. Matrix Computations.
[6] Guolin Ke, Qi Meng, Taifeng Wang, Wei Chen, Weidong Ma, and Tie-Yan Liu.

2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Advances
in Neural Information Processing Systems 30 (2017).

[7] Gunnar Martinsson. 2010. Randomized methods for computing the Singular
Value Decomposition (SVD) of very large matrices. Slides (2010). https://doi.org/
10.1016/S0022-5193(05)80649-6

[8] C.D. Meyer. 2000. Matrix analysis and applied linear algebra. Matrix (2000).
[9] Xiaoyuan Su and TaghiM. Khoshgoftaar. 2009. A Survey of Collaborative Filtering

Techniques. Advances in Artificial Intelligence (2009). https://doi.org/10.1155/
2009/421425

[10] David H. Wolpert. 1992. Stacked generalization. Neural Networks (1992). https:
//doi.org/10.1016/S0893-6080(05)80023-1

7

https://doi.org/10.2307/3214721
https://doi.org/10.2307/3214721
https://doi.org/10.1137/S0036144598347035
https://doi.org/10.1137/S0036144598347035
https://doi.org/10.1.1.15.7343
https://doi.org/10.1093/comjnl/7.2.149
https://doi.org/10.1016/S0022-5193(05)80649-6
https://doi.org/10.1016/S0022-5193(05)80649-6
https://doi.org/10.1155/2009/421425
https://doi.org/10.1155/2009/421425
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Feature Engineering
	2.2 Training and Validation

	3 Results
	4 Conclusion
	Acknowledgments
	References

