
Incorporating Field-aware Deep Embedding Networks and
Gradient Boosting Decision Trees

for Music Recommendation

The 1st Place Music Recommender System at WSDM Cup 2018

Bing Bai
Tsinghua National Laboratory for Information

Science and Technology
Department of Automation

Tsinghua University
Beijing 100084, China

bb13@mails.tsinghua.edu.cn

Yushun Fan
∗

Tsinghua National Laboratory for Information
Science and Technology

Department of Automation
Tsinghua University

Beijing 100084, China
fanyus@tsinghua.edu.cn

ABSTRACT
On-line music streaming services, like KKBOX, is bringing
great convenience for users to get access to all kinds of mu-
sic, while the hierarchical data describing the songs and the
random interests of users still make it a challenge for algo-
rithms to make accurate recommendations, especially with-
out enough historical data. In the WSDM - KKBOX’s Mu-
sic Recommendation Challenge, WSDM and KKBOX were
challenging people to predict the chances of a user listen-
ing to a song repetitively, under the condition that many
users/songs are cold-started. In this paper, we describe
our solution to the task. Our solution comprised an ensem-
ble of different models, including Field-aware Deep Embed-
ding Networks and Gradient Boosting Decision Trees. We
achieved an AUC score of 0.74787 on the Private Leader-
board, and finished the first place in the competition.

Keywords
Music recommendation, recommender system, deep learn-
ing, field-aware, GBDT, WSDM Cup

1. INTRODUCTION
With the rapid development of on-line music streaming

services, people can get access to a great many songs of all
kinds of genres in a convenient manner. The same person
could listen to the Beatles, Vivaldi, and Lady Gaga on their
morning commute, which was hardly conceivable in the past.
By mining the massive listening records, music streaming
service providers can make personalized recommendations
to users, thus relieve the information overload.

However, the trends in music are always evolving. New
songs and new artists emerge every week, which puts a great
challenge to recommendation algorithms. Without enough
historical data, how would an algorithm know if listeners will
like a new song or a new artist? And, how would it know
what songs to recommend to brand new users? WSDM has
challenged competitors to build a better music recommenda-
tion system with a donated dataset from KKBOX1, which is

∗This is the corresponding author.
1https://www.kkbox.com/

Asia’s leading music streaming service, holding the world’s
most comprehensive Asia-Pop music library with over 30
million tracks.

The dataset contains 7,377,418 records for the first observ-
able listening events in the training set, 2,556,790 records in
the testing set, and the goal is to predict the chances of a
user listening to a song repetitively within a time window
after the first observable listening event was triggered. The
dataset involves 34,403 distinct users where 10.60% of the
users do not appear in the training set, and 419,839 distinct
songs where 14.26% of them do not appear in the training
set. The metadata of users and songs is also provided. Based
on the observation from competitors, the training set cov-
ers a range of time from mid-August 2016 to mid-January
2017, and the testing set is from mid-January 2017 to late
February 2017.

Based on our understanding, the problem has the follow-
ing properties:

• Missing not at random. Some user-song pairs can
be observed and some not. If a user-song pair appears
in the dataset, we can tell that the user has listened
to the song at least once, which means that the user is
more or less interested in the song. As a result, the co-
occurrence of users and songs contains rich information
about user preference and song characteristics [18].

• Time-sensitive. Since the dataset covers a long range
of time, the pattern might evolve a lot from the be-
ginning to the end. This makes the training/testing
data follow more or less different distributions, and is
important for the validation strategy and feature en-
gineering.

Based on these properties, we propose to incorporate Field-
aware Deep Embedding Networks (FDEN) and Gradient
Boosting Decision Trees (GBDT) to make recommendations.
GBDTs are greedy methods and can fit the pattern in the
head flow well, while FDENs explore the broad combinations
of features, thus are better at finding the pattern hiding in
the flow of the long-tail. As a result, the ensemble based
on the predictions given by FDENs and GBDTs can give
a significant boost to each of them. Finally we were able

to get 0.74787 on the Private Leaderboard, and finished the
first place in the competition.

The rest of the paper is organized as follows: Section 2
summarizes some related work. Section 3 describes the over-
all approach and some important feature engineering meth-
ods. Section 4 introduces the detailed structure of the FDEN
and Section 5 introduces the GBDT model. Section 6 pro-
vides an overview of the evaluation results, and Section 7
draws the conclusion.

2. RELATED WORK
Music recommender systems have been an active research

topic for many years [16]. Cheng et al. [4] proposed a location-
aware topic model mining the common features of songs that
are suitable for a venue type to make location-aware music
recommendations. Rosa et al. [14] extracted users’ senti-
ments from social networks and focused on their relation-
ship with personalities to infer music taste and preferences.
Liebman et al. [11] proposed a novel reinforcement-learning
framework for music recommendation that does not recom-
mend songs individually but rather playlists. Schedl intro-
duced the LFM-1b dataset of more than one billion music lis-
tening events created by more than 120,000 users of Last.fm
for music retrieve and recommendation in [15].

Beyond the field of music recommendation, applying deep
learning to make recommendations also attracts a lot of re-
searchers’ attention. Cheng et al. [3] jointly trained wide
linear models and deep neural networks to combine the ben-
efits of memorization and generalization for recommender
systems. Wang et al. [20] tightly coupled deep neural net-
works and collaborative filtering to make more effective rec-
ommendations. Zhou et al. [22] proposed a Deep Interest
Network to represent users’ diverse interests with an inter-
est distribution and make better predictions on the click
through rate.

In this paper, we introduce a tailored structure of neural
networks called Field-aware Deep Embedding Network for
music recommendation. It can serve as a significant comple-
ment to GBDTs and boost the performance by ensembles.

3. OVERALL FRAMEWORK AND FEATURE
ENGINEERING

In this section, first the overall framework of our approach
is presented, and then some important feature engineering
methods are introduced.

3.1 Overall Framework
As described in the Introduction, we use an ensemble of

FDENs and GBDTs. Since the data is time-sensitive, stack-
ing ensemble [5] and blending ensemble [21] is not working
well, so we use a relatively simple form of ensemble. The
final score is a weighted average of predictions from the two
kinds of models, i.e.,

scoreensemble = 0.4 ∗ scoreFDEN + 0.6 ∗ scoreGBDT, (1)

where the weights are tuned based on scores from the Public
Leaderboard.

The predictions of FDENs (i.e., scoreFDEN) are from a
bagging ensemble using the arithmetic mean of many net-
works, each of which has slight differences on hyper-parameters,
including the forms of the activations, the `2 regularizations,
the number of nodes in hidden layers and so on. Besides, we

also tried training the models with slightly different feature
sets to get more diversity for the ensemble.

As for GBDTs, they are relatively insensitive to the change
of hyperparameters, so we only use the ensemble using weighted
mean of GBDTs with slightly different feature sets. The
weights are tuned based on the Public Leaderboard.

Due to the properties of the models, FDENs and GB-
DTs give quite uncorrelated predictions. GBDTs are greedy
methods, and always captures the pattern in the head flow
first, and then the trees behind can finally fit the records in
the tail flow. While FDENs, in contrast, explore the broad
combinations of features, so they are better at fitting the
pattern in the tail flow, but the predictions on the records
from the head flow might be influenced by the noise. As a
result, the ensemble of FDENs and GBDTs can take good
care of both the head flow and the tail flow, thus making a
significantly more accurate recommendation2.

3.2 Feature Engineering
Here we describe some important and effective features

we use.

3.2.1 Conditional Probability / Expectation Features
Music recommender systems often evolve a lot of cat-

egorical features, like user_id, song_id, language, city,
artist_name and so on. Given one feature, the conditional
probability of another feature can give rich information about
users, songs, and the context.

For example, P (source_type|user_id) can describe whether
the user listened to the song through the entry point that
he was used to or not. P (source_type = album|user_id)
and P (source_type = online-playlist|user_id) can also
describe the habit of the user, which contribute a lot to the
user portraits.

Similarly, for numerical features, we can compute the con-
ditional expectations as features, and what’s more, the con-
ditional standard deviations can also help. For example,
E(song_length|user_id) and σ(song_length|user_id) can
be used to describe the preference and habit of a user.

3.2.2 SVD Features of Co-occurrence Matrices
As mentioned in the Introduction, the data is missing-

not-at-random. So the co-occurrence matrices contain rich
information. We construct a user-song co-occurrence matrix
and a user-artist co-occurrence matrix, and use the Singu-
larly Valuable Decomposition (SVD) algorithm to find the
most important components as features. Specifically, to sup-
press the large values in the user-artist matrix, a calibration
is adopted with the following equation:

ruser,artist =

{
1 + 0.3 ∗ log(cntuser,artist), cntuser,artist > 0

0, cntuser,artist = 0
,

where cntuser,artist indicates how many times the user first
listened to songs of the certain artist.

3.2.3 Timestamp Related Features
Since the data is ordered chronologically, we can use the

index as the timestamp. This feature can help the model
find the pattern evolution during the long period of time
within the training set. Furthermore, we can also count the

2Codes are released at https://github.com/lystdo/Codes-
for-WSDM-CUP-Music-Rec-1st-place-solution

Age
Registration

Date

User SVD

Components
Gender

Embeddings

City

Embeddings

Registration

Method

Embeddings

User Concatenated Embeddings

Activation with Batch Normalization

Linear

User ID

Embeddings

Add

Dot

Length Counts
Song SVD

Components
Artist ID

Embeddings

Composer ID

Embeddings

Genre ID

Embeddings

Song Concatenated Embeddings

Activation with Batch Normalization

Linear

Last Song

Components

User Source

Type Prob.

Time-window

Counts

Source Type

ID

Embeddings

Source

Screen ID

Embeddings

Source

System Tab ID

Embeddings

Context Concatenated Embeddings

Activation with Batch Normalization

Concatenate

Activation with Batch Normalization

Activation with Batch Normalization

Activation with Batch Normalization

Dropout

User Field Song Field Context Field

Sigmoid

Normalized Dot

Figure 1: Overview of the proposed Field-aware Deep Embedding Networks. The inputs are divided into
three fields, and the structures of different fields are slightly different. For demonstration, we only present a
few features in the figure.

user/song activity within a time window regarding a record
of the first observable listening event.

3.2.4 User Behavior Features
Since the algorithm is applied after the first listening event,

we can obtain the songs that the user first listened to before
and after the event was triggered. Using these features helps
us describe the user’s temporary interests, which are impor-
tant for predicting the probability of recurring listening.

4. FIELD-AWARE DEEP EMBEDDING NET-
WORKS

In this section we, describe the structure of the proposed
Field-aware Deep Embedding Networks, and the training
method we used.

4.1 Overview of the Structure
The overview of the proposed Field-aware Deep Embed-

ding Networks is illustrated in Figure 1. Minor details are
omitted.

In the figure, “Activation with Batch Normalization” [8]
stands for layers that perform the following transformation

ABN(x) = Activation(BatchNormalization(xW + b))

and we used a variety of activations in the task. While
“Linear” stands for layers performing linear transformations
only, i.e.,

Linear(x) = xW + b.

The layer “Dot” compute the inner product of the two
inputs, i.e.,

Dot(x,y) = xyT,

and the layer “Normalized Dot” compute the cosine similar-
ity of the two inputs, i.e.,

NormalizedDot(x,y) =
xyT

‖x‖‖y‖ .

4.2 Key Properties of the Network Structure
Here we discuss some important properties about the struc-

ture.

4.2.1 Field-aware Connections
The inputs are divided into 3 groups, i.e., user field, song

field, and context field. The structure of each field is slightly
different from each other. High-level features are extracted
before they are concatenated together. This method can
reduce the number of free parameters and prevent some un-
expected feature combinations.

We also need to note that, there are some connections
among the very bottom of the fields. For example, we com-
pute the normalized dot products (i.e., cosine similarities) of
the components of the currently-listening song and the last
song the user listened to. These connections are built based
on our intuitions.

4.2.2 Trainable Embeddings for Categorical Features
We use trainable embeddings with `2 regularizations for

categorical features, which can map the categorical features
into a multidimensional space. The embeddings are ini-
tialized randomly, and trained through back propagations.
Compared with one-hot encoding, this can also reduce the
number of free parameters. With the help of shared weights
in the latter layers and `2 regularization, a better ability for
generalization can be obtained.

4.2.3 Offsets for Users
In the user field, the final representations are not only

based on the metadata of users. We allow an offset be-
tween the final representations and the predicted results
from the metadata [1, 20].With the help of `2 regulariza-
tion, the model can automatically learn that, if the data
for a user is sufficient, the representations of the user rely
more on back propagations from the targets, while if not,
rely more on the metadata.

We also tried allowing offsets for songs, but got little im-

provements, mainly because that the data for songs are far
more sparse.

4.2.4 Dot Products for User-Song Pairs
Taking inner product can give better nonlinearity without

adding too many free parameters. It can help fasten the
convergence and give better results. Some work also suggests
using element-wise multiplication or even outer product [13],
but it requires more data to prevent overfitting.

4.2.5 Densely Connections at the Head Model
Inspired by the Densely Connected Convolutional Net-

works [7], we use densely connections after the layer where
the outputs of the three fields are concatenated. Densely
connections introduce direct connections between any two
layers at the head model, thus can encourage more feature
reuse and improve the parameter efficiency.

4.3 Model Training
In this model, we use the RMSProp algorithm with ρ =

0.9 as the optimizer. The learning rate decays at a fixed
factor every epoch, i.e.,

lrate = lrate0 ∗ decayepoch num

To make good use of the parallel computing power of
GPUs and get predictions as fast as possible, the batch size
is set to 8192. Apart from the batch normalization and the
`2 regularization for embeddings, we apply dropout [17] for
regularization before the output layer. The dropout rate is
set to 0.5.

Since neural networks are sensitive to the initialization, we
use a bagging ensemble to get stable and repeatable results
for validation. The best parameters are chosen according to
local validation by random searching.

To encourage more diversity for the ensemble, we tried
multiple forms of activations, including ReLU, LeakyReLU,
PReLU, tanh and ELU. The numbers of hidden units also
change accordingly.

5. GRADIENT BOOSTING DECISION
TREES

Gradient Boosting Decision Tree is widely considered as
one of the most powerful and commonly used machine learn-
ing techniques, and there are quite a few effective implemen-
tations, including XGBoost [2], pGBRT [19] and so on. In
this paper, we use LightGBM [10], a highly efficient gradi-
ent boosting decision tree implementation by Microsoft Re-
search. LightGBM accelerates the training process through
Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB), and can achieve almost the same
accuracy with far less time consuming.

Unlike neural networks, GBDT splits the data into two
parts in a tree node according to only one feature, thus some
linear combinations of features can also help. We conduct
some linear combinations of the features based on our in-
tuitions. Except that, the features for FDENs and GBDTs
are almost the same.

To encourage more diversity for the ensemble, we tried
using weighted average of the predictions of GBDTs with
slightly different subsets of features. The weights are tuned
based on the Public Leaderboard. This method gives some
significant improvements.

Table 1: Information about the Dataset

Item Number

Records in the training set 7,377,418

Records in the testing set 2,556,790

Distinct users in total 34,403

Distinct users in the training set 30,755

Distinct songs in total 419,839

Distinct songs in the training set 359,966

Distinct artist in total 46,373

Distinct artist in the training set 40,583

6. EXPERIMENTS
In this section, we first introduce the dataset, then the

validation setup is discussed. Procedures for feature selec-
tion and model tuning are presented later. The evaluation
results and a visualization of artist embeddings are listed
lastly.

6.1 Dataset
KKBOX is the leading music streaming services in Asia.

In this challenge, we conduct experiments using the do-
nated dataset from KKBOX. Detailed information about the
dataset is summarized in Table 1.

Based on the observation from competitors, the dataset
covers quite a long range of time, i.e., the training set is from
Aug. 2016 to Jan. 2017, and the testing set is from Jan.
2017 to Feb. 2017. During the time, many new users joined
the ecosystem, and many new songs emerged. As a result,
in the testing set, 7.20% records involve users that do not
appear in the training set, 12.52% records involve songs that
do not appear in the training set, and up to 18.90% records
involve users or songs that do not appear in the training set.
This phenomenon calls for effective feature engineering from
the metadata and user-song co-occurrence.

6.2 Validation Setup
As mentioned before, the training set and testing set are

split based on time, and cover a long range of time. There-
fore, we cannot assume that the pattern stays the same from
the beginning to the end. As a result, cross-validation is not
suitable for this problem.

Since the data is ordered chronologically, we use the last
20% data for validation, and when we generate the predic-
tions for the testing set, all the data with labels are used to
train the models.

To mitigate information leakage from the future to the
past, when the features for validation are generated, only
the records in the training set is used. This can help us get
more reliable validation results.

6.3 Feature Selection and Model Tuning
For feature selection, we use the feature importance re-

ported by LightGBM. Unimportant features are dropped di-
rectly. The best threshold is based on local validation. Our
final models for LightGBM use about 400 features, most
of which are SVD components, and conditional probability
features. We use the first 48 components from user-song co-
occurrence matrix, and the first 16 components form user-

Table 2: Evaluation Results on the Leaderboard

Method Private
AUCROC

Gain over
Single Model

Public
AUCROC

Gain over
Single Model

Logistic regression with little feature engineering 0.66735 – 0.66527 –

Single FDEN 0.72787 – 0.72846 –

5-ensemble of FDENs with the same hyperparameters 0.73341 0.76% 0.73769 1.27%

5-ensemble of FDENs with different hyperparameters 0.73716 1.28% 0.73953 1.52%

25-ensemble of FDENs with different hyperparameters 0.73939 1.58% 0.74185 1.84%

Single GBDT 0.74277 – 0.74431 –

3-ensemble of GBDTs with slightly different feature sets 0.74389 0.15% 0.74569 0.19%

Ensemble of single FDEN and single GBDT 0.74390 – 0.74549 –

Ensemble of 25-ensemble FDEN and 3-ensemble GBDT 0.74695 0.41% 0.74916 0.49%

Our best submission before the deadline 0.74787 0.53% 0.75001 0.61%

artist co-occurrence matrix.
The best hyperparameters are obtained by random search-

ing on the validation set, and at the validation stage the
learning rate for GBDTs is 0.53. When the predictions on
testing set are generated, for LightGBM models, it takes
about 8 to 10 hours for training with two Intel Xeon E5-
2650 v2 with a learning rate of 0.1, and about 40 minutes
for prediction. For a single FDEN model, it takes about 8 to
20 minutes with an NVIDIA GeForce GTX 1080, depend-
ing on how large the model is. Prediction generation with
FDEN takes less than 1 minute.

6.4 Evaluation Results
Based on the aforementioned setup, we conduct experi-

ments on the testing set. Results on the Leaderboard are
listed in Table 2. For single FDEN models and 5-ensemble
FDENs, we report the results with the best public score.

Before the results of the proposed methods are analyzed,
we introduce the results of a simple logistic regression [9]
as a baseline. This method uses the one-hot encoding re-
sults of 11 categorical features, including user_id, song_id,
source_system_tab, source_screen_name, source_type,
city, gender, registered_via, artist_name, language and
genre_id, as well as two numerical features, including age

and song_length. The hyperparatmer for `2 regulariza-
tion is tuned based on local validation. This simple method
gives 0.66735 on Private Leaderboard, and 0.66527 on Pub-
lic Leaderboard, which can help us gain a better knowledge
of the dataset.

From the table, we can get that a single FDEN gives rel-
atively poor results, while 5-ensembles can already give a
very significant boost. Besides, we find that changing the
hyperparamters, including the activation, number of nodes,
`2 regularization, learning rate and so on, can encourage
more diversity between the predictions of FDENs, thus we
witness the results of 5-ensembleof FDENs with different hy-
perparameters outperforms the 5-ensemble of FDENs with
the same hyperparameters significantly, although the single
models might be a little weaker. The 25-ensemble of FDENs
is the 5-ensemble of 5-ensembles of FDENs with different hy-
perparameters, which means we repeat the experiments for 5

3Hyperparameters are also released with the codes.

times with different random seeds, and then average the re-
sults. This gives about 0.30% more improvement on Private
Leaderboard. Compared with the single model, 25-ensemble
can improve the score by 1.58% on Private Leaderboard. We
can get higher scores with even larger ensembles.

We need to note that, the hyperparameters are not op-
timized for the single model performance, so the results of
single FDEN could be improved by using a larger model
with stronger regularizations, smaller batch size and learn-
ing rate, and more epochs for training.

For GBDT models, we find that the results are a lot
more stable and insensitive to hyperparameters compared
with neural networks. To encourage more diversity, we tried
training the models with slightly different feature sets. The
differences between the subsets are mainly some count fea-
tures with high importance based on the report by Light-
GBM. According to our experiments, 3-ensemble of GBDTs
with slightly different feature sets can give about 0.15% im-
provement over a single GBDT.

During the evaluation, we find that the predictions of
FDENs and GBDTs are quite uncorrelated. For example,
the correlation coefficient between the predictions of 25-
ensemble of FDENs and the predictions of 3-ensemble of
GBDT is only 0.9156. Considering that the AUC scores are
beyond 0.74, this is a very small correlation coefficient. We
use Equation (1) to ensemble the results, and this gives an
improvement of 0.41% over 3-ensemble of GBDTs, and an
improvement of 1.02% over 25-ensemble of FDENs.

Our best submission before the deadline achieved 0.75001
on the Public Leaderboard, and 0.74787 on the Private Leader-
board, which finished the first place in the competition. The
best submission is an ensemble of more models over different
feature sets.

6.5 Embedding Visualization
In order to gain an intuitive understanding of the embed-

dings, we visualize the learned embeddings of the Top 25
most popular artist with t-SNE [12] in Figure 24.

As illustrated in the figure, Fish Leong and Hebe are very
close to each other since they are both famous for sweet love
songs, and Eason Chan and Jacky Cheung become close in

4We drop the SVD components of user-artist co-occurrence
matrix when training the models for visualization.

Figure 2: Visualization of the learned embeddings
of the Top 25 most popular artist with t-SNE.

the middle because they both have magnetic male voices.
Besides, Stone and Jam Hsiao are both famous for rock
music, Fish Leong and Stone cover many songs with each
other, Rainie Yang and aMEI are both singers with explo-
sive expressions, and Yoga Lin and Eric are both young lyric
singers. This shows that the learned embeddings can reflect
the styles of artists to some extent.

7. CONCLUSION
In this paper, we describe our approach to the WSDM -

KKbox’s Music Recommendation Challenge. We use an en-
semble of Field-aware Deep Embedding Networks and Gra-
dient Boosting Decision Trees, with some feature engineer-
ing. Thanks to the nature of the two methods, we gain a
very significant improvement after ensemble.

As the main goal of the challenge is to produce the best
performance with the provided data, we did not consider
the computation cost for generating the predictions. So
the final predictions were based on a great many base mod-
els. Besides, since the data is time-sensitive, we found that
supervised ensemble methods, like stacking ensemble and
blending ensemble, didn’t give better results. So the final
framework for the ensemble is relatively simple. With the
help of FDEN and GBDT, we were able to achieve an AUC
score of 0.74787 on the Private Leaderboard finally.

Due to time constraints, we didn’t try a lot of cross prod-
uct features and methods of optimizing AUC directly [6], so
there should be some room for further improvement under
this framework. Another promising avenue of research is
transfer learning. Since the data is missing-not-at-random,
building neural networks to predict the first listening event
and recurring listening event collectively might give some
further improvement.

8. ACKNOWLEDGMENTS
This research has been partially supported by the National

Nature Science Foundation of China (No.61673230).

9. REFERENCES
[1] B. Bai, Y. Fan, W. Tan, and J. Zhang. Dltsr: A deep

learning framework for recommendation of long-tail
web services. IEEE Transactions on Services
Computing, 2017.

[2] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 785–794, 2016.

[3] H. T. Cheng, L. Koc, J. Harmsen, T. Shaked,
T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, and M. Ispir. Wide & deep learning for
recommender systems. In Proceedings of the Workshop
on Deep Learning for Recommender Systems, pages
7–10, 2016.

[4] Z. Cheng and J. Shen. On effective location-aware
music recommendation. Acm Transactions on
Information Systems, 34(2):1–32, 2016.

[5] M. Graczyk, T. Lasota, B. TrawiÅĎski, and

K. TrawiÅĎski. Comparison of bagging, boosting and
stacking ensembles applied to real estate appraisal. In
Proceedings of Asian Conference on Intelligent
Information and Database Systems, pages 340–350,
2010.

[6] A. Herschtal and B. Raskutti. Optimising area under
the roc curve using gradient descent. In Proceedings of
International Conference on Machine Learning,
page 49, 2004.

[7] G. Huang, Z. Liu, L. van der Maaten, and K. Q.
Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[8] S. Ioffe and C. Szegedy. Batch normalization:
Accelerating deep network training by reducing
internal covariate shift. In Proceedings of International
Conference on Machine Learning, pages 448–456,
2015.

[9] D. H. W. Jr and S. Lemeshow. Applied logistic
regression. Technometrics, 34(1):358–359, 2000.

[10] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen,
W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly
efficient gradient boosting decision tree. In Proceedings
of the Advances in Neural Information Processing
Systems, pages 3149–3157, 2017.

[11] E. Liebman, M. Saar-Tsechansky, and P. Stone.
Dj-mc: A reinforcement-learning agent for music
playlist recommendation. In Proceedings of
International Conference on Autonomous Agents and
Multiagent Systems, pages 591–599, 2015.

[12] L. V. D. Maaten and G. Hinton. Visualizing data
using t-sne. Journal of Machine Learning Research,
9(2605):2579–2605, 2008.

[13] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen,
and J. Wang. Product-based neural networks for user
response prediction. In Proceedings of the IEEE
International Conference on Data Mining, pages
1149–1154, 2016.

[14] R. L. Rosa, D. Z. Rodriguez, and G. Bressan. Music
recommendation system based on user’s sentiments
extracted from social networks. IEEE Transactions on
Consumer Electronics, 61(3):359–367, 2015.

[15] M. Schedl. The lfm-1b dataset for music retrieval and
recommendation. In Proceedings of ACM International
Conference on Multimedia Retrieval, pages 103–110,
2016.

[16] Y. Song, S. Dixon, and M. Pearce. A survey of music

recommendation systems and future perspectives. In
The International Symposium on Computer Music
Modeling and Retrieval, 2012.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[18] H. Steck. Training and testing of recommender
systems on data missing not at random. In
Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Washington, Dc, Usa, July, pages 713–722, 2010.

[19] S. Tyree, K. Q. Weinberger, K. Agrawal, and
J. Paykin. Parallel boosted regression trees for web
search ranking. In Proceedings of International
Conference on World Wide Web, pages 387–396, 2011.

[20] H. Wang, N. Wang, and D. Y. Yeung. Collaborative
deep learning for recommender systems. In
Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 1235–1244, 2015.

[21] Y. Wang, M. Bellus, J. F. Geleyn, X. Ma, W. Tian,
and F. Weidle. A new method for generating initial
condition perturbations in a regional ensemble
prediction system: Blending. Monthly Weather
Review, 142(5):2043–2059, 2014.

[22] G. Zhou, C. Song, X. Zhu, X. Ma, Y. Yan, X. Dai,
H. Zhu, J. Jin, H. Li, and K. Gai. Deep interest
network for click-through rate prediction. arXiv
preprint arXiv:1706.06978, 2017.

